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About me

About me

Who | am : Jonathan Salwan
Where | work : Sysdream

What is my job : R&D
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Software testing

Definition
Bug impact
Certifications
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onathan Salwan Software testing and concolic execution



Software testing

Definition

From Wikipedia: Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product or service under
test.
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Software testing Definition

Bug impact

Bug impact

- $100 Billion per year in Europe
- Rocket Arianne V : $370 Million
- Therac-25 (Radiotherapy) : People died...

Jonathan Salwan Software testing and concolic execution



Software testing

Certifications

- ISO/IEC 9126 : Software engineering - Product quality

- SGS : Certification services from SGS demonstrate that your products,
processes, systems or services are compliant with national and
international regulations and standards.

- ED-12C/DO0-178C : Software Considerations in Airborne Systems and
Equipment Certification
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Software testing Definition

B
Certi
Software testing statistics

Software testing statistics

Fast Intelligent Code coverage

Manual test KO OK OK
Automatic test OK KO KO
Formal proof KO OK OK
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Bugs hunting

Bugs hunting
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Bugs hunting

Bugs hunting Black box
Pattern ma
Dumb fu:
In-memory fuz:
Manual vs aut

Bugs hunting

To find bugs, we have several methodologies.

- White box
Black box

- Pattern matching

- Dumb fuzzing

- In-memory fuzzing
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Whlte box
Bugs hunting Black box
Pattern ma
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In-mer
Manual vs a

White box

PHP 5.3.6 - Stack buffer overflow in socket_connect (CVE-2011-1938)

PHP_FUNCTION(socket_connect)
{

struct sockaddr_un s_un;

case AR _UNIX:
memset(&s_un, 0, sizeof(struct sockaddr_un));
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te bo;
Bugs hunting Black box
Pattern matching

Manual vs aut

Most vulnerabilities are found in private softwares thanks to black box fuzzing
- Same idea than white box fuzzing

- Need to skill++ in assembly

- Really more time consuming than white box fuzzing
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Bugs hunting B
Pattern matching
Dumb fuzzing
In-me

Pattern matching

nou rax, [rbp+var_28]

nov rax, [rbp+var_28]
mnov rax, [rax+8] nov rax, [rax+8]
nov [rbp+uvar 8], rax nov [rbp+Fornat], rax
nov rax, [rbp+var_8] nov rax, [rbp+format]
nov rsl, raz nov rdi, rax ; format
nov edi, offset format ; “%s” nov eax, 0
nov eax, 0 call printf
call _printf -
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Bugs hunting

Dumb fuzzing

The idea is to fuzz the program with semi-random data (based on a
specification of the fileformat/protocol /whatever)

1 Focus a specific RFC (Ex: http, ftp, pdf, png...)
2 Send semi-random data based on the RFC’s fields.
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Bugs hunting

attern matc
Dumb fuzzi
In-mer
\ELTE

Dumb fuzzing - http server

Socket

do_fuzz() HTTP protocal B

{Fuzzer U | GET<x=HTIPI<X>
Referer: <X=
User-Agent ; =¥>
Date: <X=
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Bugs hunting

In-memory fuzzing

The idea of this method is to instrument directly the target application’s code
to fuzz it. Here are the different steps:

1 Break before and after the target function

2 Save the context execution

3 Send semi-random data

4 Restore the execution context previously saved

5 Repeat until a crash is triggered
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Bugs hunting

In-memory fuzzing - Call graph

™ usage() initPacket()

main() — f

e connect()

malloc()

= sendData() # sendPacket()—m  send()
BuildPacket

= recvData() recvPacket() —m=  racy()
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Bugs hunting

Manual vs autonr

In-memory fuzzing - Concept

Breakpoirt X
| Save context breakpoint |

recvPacket() parsePacket()

Restore
context

in-memoryfuzzing
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Bugs hunting Black box
Pattern matching
Dumb fu:
In-memor g
Manual vs automatic testing

Manual vs automatic testing

With the classical automatic tests it's difficult to detect some bugs :
- Info leaks

- All overflows without crashs

- Design errors
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Concolic execution

Concolic execution
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Concrete execution
Concolic execution Symb:
<

Concrete execution

The concrete execution is the execution of a real program.
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G ution
Concolic execution Symbolic execution

Concolic

Symbolic execution

The symbolic execution is used to determine a time T all conditions necessary
to take the branch or not.
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Concolic execution 'mbolic execution

ition

Symbolic execution - Example

int foo(int 11, int i2)

int x =11;
int y =1i2;

[PC: True] X=i1, Y¥=i2
[PC: True] X=807?
if (x = 80
Yy * 2

if (x == 256) |[PC X>80] x:Y'z.Y:D| ‘ [PC: X<=50] XZO.YZO‘

return TRUE;

else{
a

Y o; [PC: X>80] X==2567

21 return FALSE;

22} |[PC'X>80&X:: 266]| ‘[PC' X>80 & X 1= 256]

v v

| return True - return False -

@ @
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o ion
Concolic execution 'mbolic execution
| o

Symbolic execution - Example

Three possible paths. One path for True and two paths for False.

‘ return True ay| PCi1>80 & (i2 * 2)==256

PC: i1<=80 | (i1>80 & (i2 * 2)I=256)

‘ return False
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Concolic execution €
Concolic execution

Concolic execution

Concolic execution is a technic that uses both symbolic and concrete execution
to solve a constraint path.
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IR and constraints solver

IR and constraints solver
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Valgrind

IR and constraints solver

Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools.
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IR and constraints solver

Valgrind - VEX

VEX is the Valgrind's intermediate language.
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Valgrind

IR and constraints solver

Valgrind - VEX sample

Instruction: add eax, ebx

t3 = GET:I32(0) # get Jieax, a 32-bit integer (t3 = eax)
t2 = GET:I32(12) # get Yebx, a 32-bit integer (t2 = ebx)
t1 = Add32(t3,t2) # t1 = addl(eax, ebx)
PUT(0) = t1 # put %eax (eax = t1)
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IR and constraints solver

Z3 is a high-performance theorem prover developed by Microsoft.
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IR and constraints solver

Z3 - Example

$ cat ./ex.py
from z3 import *

x = BitVec(’x’, 32)

s = Solver()

s.add((x ~ 0x55) + (3 - (2 * 12)) == 0x30)
print s.check()

print s.model()

$ ./ex.py
sat
[x = 16]
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IR and constraints solver

We will use it to solve all the constraints from our VEX's output.
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Proof of concept

Proof of concept
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Proof of concept

PoC for fun

Last summer, with my friends Ahmed Bougacha and Pierre Collet, we worked
on a concolic PoC just for fun.
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Proof of concept

Objectif : Solve this dumb crackme

char *serial = "\ =30\ x39\ x3c \x21\x320" ;
int main(void)

int fd, 1 = o;
char bufl[zs0] = {o};
char *r = buf;

fd = open("serial _txt", O _RDOMLY]);
read(fd, r, 258);
close(fdl;
while (1 <= 5){
if ((*r ~ ox55) = *serial)
return ©;
r++, serial++, 1++;

t
if (1*r)

printf (" Good boyyn"l;
return oO;
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Proof of concept

1 Taint the user input (via Valgrind)
2 Spread the taints (via Valgrind)
3 Save all constraints (via Valgrind)

4 Solve all constraints (via Z3)
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Taint syscall entries
S d the taints

in

onstraints with

Proof of concept

Taint syscall entries - Diagram

start end
0x08067843 0x08067943

j') read "| read(fd, | 0x08067843, 256]);

N d Tainted
T T .\\\ N
| env —» Binary - recv
A S N
o ™
( |
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Taint syscall entries
Spread the taints

Proof of concept .

Taint syscall entries - in Valgrind

With valgrind we can add a Pre and Post syscall handler.
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Taint syscall entries
Spread the taints

Proof of concept .

Taint syscall entries - in Valgrind

static void pre_syscall(ThreadId tId, Ulnt syscall_number, UWord* args,
UInt nArgs){
}

static void post_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs, SysRes res){

}

static void init(void)

{
VG_(details_name) ("Taminoo");
VG_(details_version) (NULL) ;
VG_(details_description) ("Taint analysis poc");
[...]
VG_(basic_tool_funcs) (init, instrument, fini);
[...]

VG_(needs_syscall_wrapper) (pre_syscall, post_syscall);
}

VG_DETERMINE_INTERFACE_VERSION(init)
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ries
Spread the taints

Proof of concept

Spread the taints

To propagate correctly the taints, we instrument each instruction of the binary.
If it is a GET, LOAD, PUT or STORE instruction we spread the taints.

Jonathan Salwan Software testing and concolic execution



Proof of concept

Spread the taints

The variable a is tainted. When b = a and ¢ = b, b and c will also be tainted
because they can be controlled via a.

uint32_t a, b, c;

a = atoi(user_input);
a; /* b is tainted */
c =Db; /* c is tainted */

o'
I
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Taint s le
Spread the taints

Proof of concept
onstraints with

Spread the taints - in Valgrind

switch (st->tag) {

case Ist_Store:
INSERT_DIRTY (helper_store,
/* dst_addr */ st->Ist.Store.addr,
/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Store.data),
/* size */ INSERT_EXPR_SIZE(st->Ist.Store.data));
break;

case Ist_Put:
INSERT_DIRTY (helper_put,
/* dst_reg */ mkIRExpr_HWord(st->Ist.Put.offset),
/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Put.data),
/* size */ INSERT_EXPR_SIZE(st->Ist.Put.data));
break;

case Iex_Get:
INSERT_DIRTY (helper_get,
/* dst_tmp */ mkIRExpr_HWord(dst),
/* src_reg */ mkIRExpr_HWord(data->Iex.Get.offset),
/* size */ mkIRExpr_HWord(sizeofIRType(data->Iex.Get.ty)));
break;

case Iex_Load:
INSERT_DIRTY (helper_load,
/* dst_tmp */ mkIRExpr_HWord(st->Ist.WrTmp.tmp),
/* src_addr */ st->Ist.WrTmp.data->Iex.Load.addr,
/* size */ INSERT_TYPE_SIZE(data->Iex.Load.ty));
break;

}
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Taint s | en
S d the taints
Constraints.

Proof of concept
onstraints w

Constraints

==14567==

#1:8 = Read(4,0)

#2:8 = Read(4,1)

#3:8 = Read(4,2)

#4:8 = Read(4,3)
#5:32 = 8Uto32(#1:8)
#6:32 = Xor32(#5:32,0x55)
#7:8 = 32to8_0(#6:32)
#8:8 = 32to8_1(#6:32)
#9:8 = 32to8_2(#6:32)
#10:8 = 32to8_3(#6:32)

#11:32 = 8Uto32(#7:8)
#12:8 32to8(#11:32)
#13:1 CmpEQ8 (#12:8,0x30) = False
#14:32 1Uto32(#13:1)
#15:1 = 32to1(#14:32)
Jump (#15:1) = False

#6 freed

#5 freed

#14 freed

#13 freed

#12 freed

#15 freed

#11 freed

#7 freed

==14567==
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Proof of concept

Constraints - List

Every constraint depends of the previous constraint.
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Proof of concept

Constraints - List

@

#12:8 = 32taB(#11:32)

#11:32 = BUto32(#7:8)

onathan Salwa

pread the taints
Constraints
S straints wit

v g
= #32=Xor32(#5:32,0x55)
#5:32 =BUto32(#1 8)
#1:8 = Read(4,0)
\

T

Serialtxt
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ain

Proof of concept e constraints with Z3

Solve constraints with Z3

All the constraints are converted using the Z3 syntax
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Proof of concept Solve constraints with Z3

Solve constraints with Z3 - Original constraint

The first constraint is : CmpEQ8(Xor32(Read(4,0),0x55),0x30)
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Proof of concept

Solve constraints with Z3 - Z3 pattern

#
x =
s
s

First constraint in Z3 pattern
BitVec(’x’, 32)

Solver ()

.add((x ~ 0xb5) == 0x30)
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Proof of concept s

( s
Solve constraints with Z3

Solve constraints with Z3 - Concolic execution

‘ Entry H Entry H Entry H Entry H Entry || Entry ‘

v

‘CW :False‘ ‘ C1=True ‘ |C1 =True | ‘CW =True | ‘ C1=Tre | |C1 =Tre ‘

‘CQ:Fa\se‘ |C2:Tr'ue | ‘C2:Tr’ue | ‘ C2=Tre | |C2:True ‘

vy

|C3:Fa\se| ‘C3:Tr’ue | ‘ C3=Tre | |C3:True ‘

'

‘C4:Fa\seHC4:True | |C4:True ‘

C5 =False

Success
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aint:

Proof of concept i it 75

Solve constraints with Z3 - All constraints solved

Cl = CmpEQ8(Xor32(Read(4,0),0x55),0x30) = ‘e’
C2 = CmpEQ8(Xor32(Read(4,1),0x55),0x39) = 'I’
C3 = CmpEQ8(Xor32(Read(4,2),0x55),0x3c) =i’
C4 = CmpEQ8(Xor32(Read(4,3),0x55),0x21) = 't’
C5 = CmpEQ8(Xor32(Read(4,4),0x55),0x30) = 'e’
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Blog post : http://shell-storm.org/blog/Concolic-execution-taint-analysis-
with-valgrind-and-constraints-path-solver-with-z3/
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Extra
Questions ?
Th |

Questions ?

Questions ?
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Questions ?

Thanks |

Thanks !

http://sbxc.org
http://twitter.com/JonathanSalwan
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