
About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Software testing and concolic execution

Jonathan Salwan

LSE Summer Week 2013

July 18, 2013

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

About me

Who I am : Jonathan Salwan

Where I work : Sysdream

What is my job : R&D

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Software testing

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Definition

From Wikipedia: Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product or service under
test.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Bug impact

- $100 Billion per year in Europe

- Rocket Arianne V : $370 Million

- Therac-25 (Radiotherapy) : People died...

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Certifications

- ISO/IEC 9126 : Software engineering - Product quality

- SGS : Certification services from SGS demonstrate that your products,
processes, systems or services are compliant with national and
international regulations and standards.

- ED-12C/DO-178C : Software Considerations in Airborne Systems and
Equipment Certification

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Software testing statistics

Fast Intelligent Code coverage
Manual test KO OK OK
Automatic test OK KO KO
Formal proof KO OK OK

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Bugs hunting

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Bugs hunting

To find bugs, we have several methodologies.

- White box

- Black box

- Pattern matching

- Dumb fuzzing

- In-memory fuzzing

- ...

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

White box

PHP 5.3.6 - Stack buffer overflow in socket connect (CVE-2011-1938)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Black box

Most vulnerabilities are found in private softwares thanks to black box fuzzing

- Same idea than white box fuzzing

- Need to skill++ in assembly

- Really more time consuming than white box fuzzing

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Pattern matching

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Dumb fuzzing

The idea is to fuzz the program with semi-random data (based on a
specification of the fileformat/protocol/whatever)

1 Focus a specific RFC (Ex: http, ftp, pdf, png...)

2 Send semi-random data based on the RFC’s fields.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Dumb fuzzing - http server

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

In-memory fuzzing

The idea of this method is to instrument directly the target application’s code
to fuzz it. Here are the different steps:

1 Break before and after the target function

2 Save the context execution

3 Send semi-random data

4 Restore the execution context previously saved

5 Repeat until a crash is triggered

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

In-memory fuzzing - Call graph

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

In-memory fuzzing - Concept

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Manual vs automatic testing

With the classical automatic tests it’s difficult to detect some bugs :

- Info leaks

- All overflows without crashs

- Design errors

- ...

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Concolic execution

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Concrete execution

The concrete execution is the execution of a real program.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Symbolic execution

The symbolic execution is used to determine a time T all conditions necessary
to take the branch or not.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Symbolic execution - Example

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Symbolic execution - Example

Three possible paths. One path for True and two paths for False.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Concrete execution
Symbolic execution
Concolic execution

Concolic execution

Concolic execution is a technic that uses both symbolic and concrete execution
to solve a constraint path.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

IR and constraints solver

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Valgrind - VEX

VEX is the Valgrind’s intermediate language.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Valgrind - VEX sample

Instruction: add eax, ebx

t3 = GET:I32(0) # get %eax, a 32-bit integer (t3 = eax)

t2 = GET:I32(12) # get %ebx, a 32-bit integer (t2 = ebx)

t1 = Add32(t3,t2) # t1 = addl(eax, ebx)

PUT(0) = t1 # put %eax (eax = t1)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Z3

Z3 is a high-performance theorem prover developed by Microsoft.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Z3 - Example

$ cat ./ex.py
from z3 import *

x = BitVec(’x’, 32)
s = Solver()
s.add((x ^ 0x55) + (3 - (2 * 12)) == 0x30)
print s.check()
print s.model()

$./ex.py
sat
[x = 16]

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Z3 - Why ?

We will use it to solve all the constraints from our VEX’s output.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Proof of concept

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

PoC for fun

Last summer, with my friends Ahmed Bougacha and Pierre Collet, we worked
on a concolic PoC just for fun.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Goal

Objectif : Solve this dumb crackme

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Plan

1 Taint the user input (via Valgrind)

2 Spread the taints (via Valgrind)

3 Save all constraints (via Valgrind)

4 Solve all constraints (via Z3)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Taint syscall entries - Diagram

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Taint syscall entries - in Valgrind

With valgrind we can add a Pre and Post syscall handler.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Taint syscall entries - in Valgrind

static void pre_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs){

}

static void post_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs, SysRes res){

}

static void init(void)
{

VG_(details_name) ("Taminoo");
VG_(details_version) (NULL);
VG_(details_description) ("Taint analysis poc");
[...]
VG_(basic_tool_funcs) (init, instrument, fini);
[...]
VG_(needs_syscall_wrapper) (pre_syscall, post_syscall);

}

VG_DETERMINE_INTERFACE_VERSION(init)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Spread the taints

To propagate correctly the taints, we instrument each instruction of the binary.
If it is a GET, LOAD, PUT or STORE instruction we spread the taints.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Spread the taints

The variable a is tainted. When b = a and c = b, b and c will also be tainted
because they can be controlled via a.

uint32_t a, b, c;

a = atoi(user_input);
b = a; /* b is tainted */
c = b; /* c is tainted */

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Spread the taints - in Valgrind

switch (st->tag) {

case Ist_Store:

INSERT_DIRTY(helper_store,

/* dst_addr */ st->Ist.Store.addr,

/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Store.data),

/* size */ INSERT_EXPR_SIZE(st->Ist.Store.data));

break;

case Ist_Put:

INSERT_DIRTY(helper_put,

/* dst_reg */ mkIRExpr_HWord(st->Ist.Put.offset),

/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Put.data),

/* size */ INSERT_EXPR_SIZE(st->Ist.Put.data));

break;

case Iex_Get:

INSERT_DIRTY(helper_get,

/* dst_tmp */ mkIRExpr_HWord(dst),

/* src_reg */ mkIRExpr_HWord(data->Iex.Get.offset),

/* size */ mkIRExpr_HWord(sizeofIRType(data->Iex.Get.ty)));

break;

case Iex_Load:

INSERT_DIRTY(helper_load,

/* dst_tmp */ mkIRExpr_HWord(st->Ist.WrTmp.tmp),

/* src_addr */ st->Ist.WrTmp.data->Iex.Load.addr,

/* size */ INSERT_TYPE_SIZE(data->Iex.Load.ty));

break;

[...]

}

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Constraints - Output

==14567==

#1:8 = Read(4,0)

#2:8 = Read(4,1)

#3:8 = Read(4,2)

#4:8 = Read(4,3)

#5:32 = 8Uto32(#1:8)

#6:32 = Xor32(#5:32,0x55)

#7:8 = 32to8_0(#6:32)

#8:8 = 32to8_1(#6:32)

#9:8 = 32to8_2(#6:32)

#10:8 = 32to8_3(#6:32)

#11:32 = 8Uto32(#7:8)

#12:8 = 32to8(#11:32)

#13:1 = CmpEQ8(#12:8,0x30) = False

#14:32 = 1Uto32(#13:1)

#15:1 = 32to1(#14:32)

Jump(#15:1) = False

#6 freed

#5 freed

#14 freed

#13 freed

#12 freed

#15 freed

#11 freed

#7 freed

==14567==

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Constraints - List

Every constraint depends of the previous constraint.

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Constraints - List

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Solve constraints with Z3

All the constraints are converted using the Z3 syntax

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Solve constraints with Z3 - Original constraint

The first constraint is : CmpEQ8(Xor32(Read(4,0),0x55),0x30)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Solve constraints with Z3 - Z3 pattern

First constraint in Z3 pattern

x = BitVec(’x’, 32)

s = Solver()

s.add((x ^ 0x55) == 0x30)

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Solve constraints with Z3 - Concolic execution

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Goal
Plan
Taint syscall entries
Spread the taints
Constraints
Solve constraints with Z3

Solve constraints with Z3 - All constraints solved

C1 = CmpEQ8(Xor32(Read(4,0),0x55),0x30) = ’e’

C2 = CmpEQ8(Xor32(Read(4,1),0x55),0x39) = ’l’

C3 = CmpEQ8(Xor32(Read(4,2),0x55),0x3c) = ’i’

C4 = CmpEQ8(Xor32(Read(4,3),0x55),0x21) = ’t’

C5 = CmpEQ8(Xor32(Read(4,4),0x55),0x30) = ’e’

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Extra
Questions ?
Thanks !

Extra

Blog post : http://shell-storm.org/blog/Concolic-execution-taint-analysis-
with-valgrind-and-constraints-path-solver-with-z3/

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Extra
Questions ?
Thanks !

Questions ?

Questions ?

Jonathan Salwan Software testing and concolic execution

About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Extra
Questions ?
Thanks !

Thanks !

http://sbxc.org

http://twitter.com/JonathanSalwan

Jonathan Salwan Software testing and concolic execution

	About me
	About me

	Software testing
	Definition
	Bug impact
	Certifications
	Software testing statistics

	Bugs hunting
	Bugs hunting
	White box
	Black box
	Pattern matching
	Dumb fuzzing
	In-memory fuzzing
	Manual vs automatic testing

	Concolic execution
	Concrete execution
	Symbolic execution
	Concolic execution

	IR and constraints solver
	Valgrind
	Z3

	Proof of concept
	Goal
	Plan
	Taint syscall entries
	Spread the taints
	Constraints
	Solve constraints with Z3

	End
	Extra
	Questions ?
	Thanks !

