Software testing and concolic execution

Jonathan Salwan

LSE Summer Week 2013

July 18, 2013

Jonathan Salwan Software testing and concolic execution

About me

About me

Who | am : Jonathan Salwan
Where | work : Sysdream

What is my job : R&D

Jonathan Salwan Software testing and concolic execution

Software testing

Definition
Bug impact
Certifications

Software testing

onathan Salwan Software testing and concolic execution

Software testing

Definition

From Wikipedia: Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product or service under
test.

Jonathan Salwan Software testing and concolic execution

Software testing Definition

Bug impact

Bug impact

- $100 Billion per year in Europe
- Rocket Arianne V : $370 Million
- Therac-25 (Radiotherapy) : People died...

Jonathan Salwan Software testing and concolic execution

Software testing

Certifications

- ISO/IEC 9126 : Software engineering - Product quality

- SGS : Certification services from SGS demonstrate that your products,
processes, systems or services are compliant with national and
international regulations and standards.

- ED-12C/DO0-178C : Software Considerations in Airborne Systems and
Equipment Certification

Jonathan Salwan Software testing and concolic execution

Software testing Definition

B
Certi
Software testing statistics

Software testing statistics

Fast Intelligent Code coverage

Manual test KO OK OK
Automatic test OK KO KO
Formal proof KO OK OK

Jonathan Salwan Software testing and concolic execution

Bugs hunting

Bugs hunting

nathan Salwan Software testing and concolic execution

Bugs hunting

Bugs hunting Black box
Pattern ma
Dumb fu:
In-memory fuz:
Manual vs aut

Bugs hunting

To find bugs, we have several methodologies.

- White box
Black box

- Pattern matching

- Dumb fuzzing

- In-memory fuzzing

Jonathan Salwan Software testing and concolic execution

hun
Whlte box
Bugs hunting Black box
Pattern ma
umb fu.
In-mer
Manual vs a

White box

PHP 5.3.6 - Stack buffer overflow in socket_connect (CVE-2011-1938)

PHP_FUNCTION(socket_connect)
{

struct sockaddr_un s_un;

case AR _UNIX:
memset(&s_un, 0, sizeof(struct sockaddr_un));

Jonathan Salwan Software testing and concolic execution

te bo;
Bugs hunting Black box
Pattern matching

Manual vs aut

Most vulnerabilities are found in private softwares thanks to black box fuzzing
- Same idea than white box fuzzing

- Need to skill++ in assembly

- Really more time consuming than white box fuzzing

Jonathan Salwan Software testing and concolic execution

Bugs hunting B
Pattern matching
Dumb fuzzing
In-me

Pattern matching

nou rax, [rbp+var_28]

nov rax, [rbp+var_28]
mnov rax, [rax+8] nov rax, [rax+8]
nov [rbp+uvar 8], rax nov [rbp+Fornat], rax
nov rax, [rbp+var_8] nov rax, [rbp+format]
nov rsl, raz nov rdi, rax ; format
nov edi, offset format ; “%s” nov eax, 0
nov eax, 0 call printf
call _printf -

onathan Salwa Software testing and concolic execution

Bugs hunting

Dumb fuzzing

The idea is to fuzz the program with semi-random data (based on a
specification of the fileformat/protocol /whatever)

1 Focus a specific RFC (Ex: http, ftp, pdf, png...)
2 Send semi-random data based on the RFC’s fields.

Jonathan Salwan Software testing and concolic execution

Bugs hunting

attern matc
Dumb fuzzi
In-mer
\ELTE

Dumb fuzzing - http server

Socket

do_fuzz() HTTP protocal B

{Fuzzer U | GET<x=HTIPI<X>
Referer: <X=
User-Agent ; =¥>
Date: <X=

Jonathan Salwan Software testing and concolic execution

Bugs hunting

In-memory fuzzing

The idea of this method is to instrument directly the target application’s code
to fuzz it. Here are the different steps:

1 Break before and after the target function

2 Save the context execution

3 Send semi-random data

4 Restore the execution context previously saved

5 Repeat until a crash is triggered

Jonathan Salwan Software testing and concolic execution

Bugs hunting

In-memory fuzzing - Call graph

™ usage() initPacket()

main() — f

e connect()

malloc()

= sendData() # sendPacket()—m send()
BuildPacket

= recvData() recvPacket() —m= racy()

Jonathan Salwan Software testing and concolic execution

Bugs hunting

Manual vs autonr

In-memory fuzzing - Concept

Breakpoirt X
| Save context breakpoint |

recvPacket() parsePacket()

Restore
context

in-memoryfuzzing

Jonathan Salwan Software testing and concolic execution

Bugs hunting Black box
Pattern matching
Dumb fu:
In-memor g
Manual vs automatic testing

Manual vs automatic testing

With the classical automatic tests it's difficult to detect some bugs :
- Info leaks

- All overflows without crashs

- Design errors

Jonathan Salwan Software testing and concolic execution

Concolic execution

Concolic execution

Jonathan Salwan Software testing and concolic execution

Concrete execution
Concolic execution Symb:
<

Concrete execution

The concrete execution is the execution of a real program.

Jonathan Salwan Software testing and concolic execution

G ution
Concolic execution Symbolic execution

Concolic

Symbolic execution

The symbolic execution is used to determine a time T all conditions necessary
to take the branch or not.

Jonathan Salwan Software testing and concolic execution

on
Concolic execution 'mbolic execution

ition

Symbolic execution - Example

int foo(int 11, int i2)

int x =11;
int y =1i2;

[PC: True] X=i1, Y¥=i2
[PC: True] X=807?
if (x = 80
Yy * 2

if (x == 256) |[PC X>80] x:Y'z.Y:D| ‘ [PC: X<=50] XZO.YZO‘

return TRUE;

else{
a

Y o; [PC: X>80] X==2567

21 return FALSE;

22} |[PC'X>80&X:: 266]| ‘[PC' X>80 & X 1= 256]

v v

| return True - return False -

@ @

nathan Salwan Software testing and concolic execution

o ion
Concolic execution 'mbolic execution
| o

Symbolic execution - Example

Three possible paths. One path for True and two paths for False.

‘ return True ay| PCi1>80 & (i2 * 2)==256

PC: i1<=80 | (i1>80 & (i2 * 2)I=256)

‘ return False

Jonathan Salwan Software testing and concolic execution

Concolic execution €
Concolic execution

Concolic execution

Concolic execution is a technic that uses both symbolic and concrete execution
to solve a constraint path.

Jonathan Salwan Software testing and concolic execution

IR and constraints solver

IR and constraints solver

Jonathan Salwan Software testing and concolic execution

Valgrind

IR and constraints solver

Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools.

Jonathan Salwan Software testing and concolic execution

IR and constraints solver

Valgrind - VEX

VEX is the Valgrind's intermediate language.

Jonathan Salwan Software testing and concolic execution

Valgrind

IR and constraints solver

Valgrind - VEX sample

Instruction: add eax, ebx

t3 = GET:I32(0) # get Jieax, a 32-bit integer (t3 = eax)
t2 = GET:I32(12) # get Yebx, a 32-bit integer (t2 = ebx)
t1 = Add32(t3,t2) # t1 = addl(eax, ebx)
PUT(0) = t1 # put %eax (eax = t1)

Jonathan Salwan Software testing and concolic execution

IR and constraints solver

Z3 is a high-performance theorem prover developed by Microsoft.

Jonathan Salwan Software testing and concolic execution

IR and constraints solver

Z3 - Example

$ cat ./ex.py
from z3 import *

x = BitVec(’x’, 32)

s = Solver()

s.add((x ~ 0x55) + (3 - (2 * 12)) == 0x30)
print s.check()

print s.model()

$./ex.py
sat
[x = 16]

Jonathan Salwan Software testing and concolic execution

IR and constraints solver

We will use it to solve all the constraints from our VEX's output.

Jonathan Salwan Software testing and concolic execution

Proof of concept

Proof of concept

nathan Salwan Software testing and concolic execution

Proof of concept

PoC for fun

Last summer, with my friends Ahmed Bougacha and Pierre Collet, we worked
on a concolic PoC just for fun.

Jonathan Salwan Software testing and concolic execution

Proof of concept

Objectif : Solve this dumb crackme

char *serial = "\ =30\ x39\ x3c \x21\x320" ;
int main(void)

int fd, 1 = o;
char bufl[zs0] = {o};
char *r = buf;

fd = open("serial _txt", O _RDOMLY]);
read(fd, r, 258);
close(fdl;
while (1 <= 5){
if ((*r ~ ox55) = *serial)
return ©;
r++, serial++, 1++;

t
if (1*r)

printf (" Good boyyn"l;
return oO;

Jonathan Salwan Software testing and concolic execution

Proof of concept

1 Taint the user input (via Valgrind)
2 Spread the taints (via Valgrind)
3 Save all constraints (via Valgrind)

4 Solve all constraints (via Z3)

Jonathan Salwan Software testing and concolic execution

Taint syscall entries
S d the taints

in

onstraints with

Proof of concept

Taint syscall entries - Diagram

start end
0x08067843 0x08067943

j') read "| read(fd, | 0x08067843, 256]);

N d Tainted
T T .\\\ N
| env —» Binary - recv
A S N
o ™
(|

Jonathan Salwan Software testing and concolic execution

Taint syscall entries
Spread the taints

Proof of concept .

Taint syscall entries - in Valgrind

With valgrind we can add a Pre and Post syscall handler.

Jonathan Salwan Software testing and concolic execution

Taint syscall entries
Spread the taints

Proof of concept .

Taint syscall entries - in Valgrind

static void pre_syscall(ThreadId tId, Ulnt syscall_number, UWord* args,
UInt nArgs){
}

static void post_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs, SysRes res){

}

static void init(void)

{
VG_(details_name) ("Taminoo");
VG_(details_version) (NULL) ;
VG_(details_description) ("Taint analysis poc");
[...]
VG_(basic_tool_funcs) (init, instrument, fini);
[...]

VG_(needs_syscall_wrapper) (pre_syscall, post_syscall);
}

VG_DETERMINE_INTERFACE_VERSION(init)

Jonathan Salwan Software testing and concolic execution

ries
Spread the taints

Proof of concept

Spread the taints

To propagate correctly the taints, we instrument each instruction of the binary.
If it is a GET, LOAD, PUT or STORE instruction we spread the taints.

Jonathan Salwan Software testing and concolic execution

Proof of concept

Spread the taints

The variable a is tainted. When b = a and ¢ = b, b and c will also be tainted
because they can be controlled via a.

uint32_t a, b, c;

a = atoi(user_input);
a; /* b is tainted */
c =Db; /* c is tainted */

o'
I

Jonathan Salwan Software testing and concolic execution

Taint s le
Spread the taints

Proof of concept
onstraints with

Spread the taints - in Valgrind

switch (st->tag) {

case Ist_Store:
INSERT_DIRTY (helper_store,
/* dst_addr */ st->Ist.Store.addr,
/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Store.data),
/* size */ INSERT_EXPR_SIZE(st->Ist.Store.data));
break;

case Ist_Put:
INSERT_DIRTY (helper_put,
/* dst_reg */ mkIRExpr_HWord(st->Ist.Put.offset),
/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Put.data),
/* size */ INSERT_EXPR_SIZE(st->Ist.Put.data));
break;

case Iex_Get:
INSERT_DIRTY (helper_get,
/* dst_tmp */ mkIRExpr_HWord(dst),
/* src_reg */ mkIRExpr_HWord(data->Iex.Get.offset),
/* size */ mkIRExpr_HWord(sizeofIRType(data->Iex.Get.ty)));
break;

case Iex_Load:
INSERT_DIRTY (helper_load,
/* dst_tmp */ mkIRExpr_HWord(st->Ist.WrTmp.tmp),
/* src_addr */ st->Ist.WrTmp.data->Iex.Load.addr,
/* size */ INSERT_TYPE_SIZE(data->Iex.Load.ty));
break;

}

Jonathan Salwan Software testing and concolic execution

Taint s | en
S d the taints
Constraints.

Proof of concept
onstraints w

Constraints

==14567==

#1:8 = Read(4,0)

#2:8 = Read(4,1)

#3:8 = Read(4,2)

#4:8 = Read(4,3)
#5:32 = 8Uto32(#1:8)
#6:32 = Xor32(#5:32,0x55)
#7:8 = 32to8_0(#6:32)
#8:8 = 32to8_1(#6:32)
#9:8 = 32to8_2(#6:32)
#10:8 = 32to8_3(#6:32)

#11:32 = 8Uto32(#7:8)
#12:8 32to8(#11:32)
#13:1 CmpEQ8 (#12:8,0x30) = False
#14:32 1Uto32(#13:1)
#15:1 = 32to1(#14:32)
Jump (#15:1) = False

#6 freed

#5 freed

#14 freed

#13 freed

#12 freed

#15 freed

#11 freed

#7 freed

==14567==

Jonathan Salwan Software testing and concolic execution

Proof of concept

Constraints - List

Every constraint depends of the previous constraint.

Jonathan Salwan Software testing and concolic execution

Proof of concept

Constraints - List

@

#12:8 = 32taB(#11:32)

#11:32 = BUto32(#7:8)

onathan Salwa

pread the taints
Constraints
S straints wit

v g
= #32=Xor32(#5:32,0x55)
#5:32 =BUto32(#1 8)
#1:8 = Read(4,0)
\

T

Serialtxt

Software testing and concolic execution

ain

Proof of concept e constraints with Z3

Solve constraints with Z3

All the constraints are converted using the Z3 syntax

Jonathan Salwan Software testing and concolic execution

Proof of concept Solve constraints with Z3

Solve constraints with Z3 - Original constraint

The first constraint is : CmpEQ8(Xor32(Read(4,0),0x55),0x30)

Jonathan Salwan Software testing and concolic execution

Proof of concept

Solve constraints with Z3 - Z3 pattern

#
x =
s
s

First constraint in Z3 pattern
BitVec(’x’, 32)

Solver ()

.add((x ~ 0xb5) == 0x30)

Jonathan Salwan Software testing and concolic execution

Proof of concept s

(s
Solve constraints with Z3

Solve constraints with Z3 - Concolic execution

‘ Entry H Entry H Entry H Entry H Entry || Entry ‘

v

‘CW :False‘ ‘ C1=True ‘ |C1 =True | ‘CW =True | ‘ C1=Tre | |C1 =Tre ‘

‘CQ:Fa\se‘ |C2:Tr'ue | ‘C2:Tr’ue | ‘ C2=Tre | |C2:True ‘

vy

|C3:Fa\se| ‘C3:Tr’ue | ‘ C3=Tre | |C3:True ‘

'

‘C4:Fa\seHC4:True | |C4:True ‘

C5 =False

Success

nathan Salwan Software testing and concolic execution

aint:

Proof of concept i it 75

Solve constraints with Z3 - All constraints solved

Cl = CmpEQ8(Xor32(Read(4,0),0x55),0x30) = ‘e’
C2 = CmpEQ8(Xor32(Read(4,1),0x55),0x39) = 'I’
C3 = CmpEQ8(Xor32(Read(4,2),0x55),0x3c) =i’
C4 = CmpEQ8(Xor32(Read(4,3),0x55),0x21) = 't’
C5 = CmpEQ8(Xor32(Read(4,4),0x55),0x30) = 'e’

Jonathan Salwan Software testing and concolic execution

Blog post : http://shell-storm.org/blog/Concolic-execution-taint-analysis-
with-valgrind-and-constraints-path-solver-with-z3/

Jonathan Salwan Software testing and concolic execution

Extra
Questions ?
Th |

Questions ?

Questions ?

Jonathan Salwan Software testing and concolic execution

Questions ?

Thanks |

Thanks !

http://sbxc.org
http://twitter.com/JonathanSalwan

Jonathan Salwan Software testing and concolic execution

	About me
	About me

	Software testing
	Definition
	Bug impact
	Certifications
	Software testing statistics

	Bugs hunting
	Bugs hunting
	White box
	Black box
	Pattern matching
	Dumb fuzzing
	In-memory fuzzing
	Manual vs automatic testing

	Concolic execution
	Concrete execution
	Symbolic execution
	Concolic execution

	IR and constraints solver
	Valgrind
	Z3

	Proof of concept
	Goal
	Plan
	Taint syscall entries
	Spread the taints
	Constraints
	Solve constraints with Z3

	End
	Extra
	Questions ?
	Thanks !

