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About me

Who I am : Jonathan Salwan

Where I work : Sysdream

What is my job : R&D

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Software testing

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Definition
Bug impact
Certifications
Software testing statistics

Definition

From Wikipedia: Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product or service under
test.
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Bug impact

- $100 Billion per year in Europe

- Rocket Arianne V : $370 Million

- Therac-25 (Radiotherapy) : People died...
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Certifications

- ISO/IEC 9126 : Software engineering - Product quality

- SGS : Certification services from SGS demonstrate that your products,
processes, systems or services are compliant with national and
international regulations and standards.

- ED-12C/DO-178C : Software Considerations in Airborne Systems and
Equipment Certification
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Software testing statistics

Fast Intelligent Code coverage
Manual test KO OK OK
Automatic test OK KO KO
Formal proof KO OK OK
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Bugs hunting

To find bugs, we have several methodologies.

- White box

- Black box

- Pattern matching

- Dumb fuzzing

- In-memory fuzzing

- ...
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White box

PHP 5.3.6 - Stack buffer overflow in socket connect (CVE-2011-1938)

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Bugs hunting
White box
Black box
Pattern matching
Dumb fuzzing
In-memory fuzzing
Manual vs automatic testing

Black box

Most vulnerabilities are found in private softwares thanks to black box fuzzing

- Same idea than white box fuzzing

- Need to skill++ in assembly

- Really more time consuming than white box fuzzing
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Dumb fuzzing

The idea is to fuzz the program with semi-random data (based on a
specification of the fileformat/protocol/whatever)

1 Focus a specific RFC (Ex: http, ftp, pdf, png...)

2 Send semi-random data based on the RFC’s fields.
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Dumb fuzzing - http server
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In-memory fuzzing

The idea of this method is to instrument directly the target application’s code
to fuzz it. Here are the different steps:

1 Break before and after the target function

2 Save the context execution

3 Send semi-random data

4 Restore the execution context previously saved

5 Repeat until a crash is triggered
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In-memory fuzzing - Call graph
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Manual vs automatic testing

With the classical automatic tests it’s difficult to detect some bugs :

- Info leaks

- All overflows without crashs

- Design errors

- ...
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Concrete execution

The concrete execution is the execution of a real program.
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Symbolic execution

The symbolic execution is used to determine a time T all conditions necessary
to take the branch or not.
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Symbolic execution - Example

Three possible paths. One path for True and two paths for False.
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Concolic execution

Concolic execution is a technic that uses both symbolic and concrete execution
to solve a constraint path.
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Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools.
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Valgrind - VEX

VEX is the Valgrind’s intermediate language.
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Valgrind - VEX sample

Instruction: add eax, ebx

t3 = GET:I32(0) # get %eax, a 32-bit integer (t3 = eax)

t2 = GET:I32(12) # get %ebx, a 32-bit integer (t2 = ebx)

t1 = Add32(t3,t2) # t1 = addl(eax, ebx)

PUT(0) = t1 # put %eax (eax = t1)
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Z3

Z3 is a high-performance theorem prover developed by Microsoft.

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Valgrind
Z3

Z3 - Example

$ cat ./ex.py
from z3 import *

x = BitVec(’x’, 32)
s = Solver()
s.add((x ^ 0x55) + (3 - (2 * 12)) == 0x30)
print s.check()
print s.model()

$ ./ex.py
sat
[x = 16]
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Z3 - Why ?

We will use it to solve all the constraints from our VEX’s output.
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PoC for fun

Last summer, with my friends Ahmed Bougacha and Pierre Collet, we worked
on a concolic PoC just for fun.
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Goal

Objectif : Solve this dumb crackme
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Plan

1 Taint the user input (via Valgrind)

2 Spread the taints (via Valgrind)

3 Save all constraints (via Valgrind)

4 Solve all constraints (via Z3)
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Taint syscall entries - Diagram
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Taint syscall entries - in Valgrind

With valgrind we can add a Pre and Post syscall handler.
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Taint syscall entries - in Valgrind

static void pre_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs){

}

static void post_syscall(ThreadId tId, UInt syscall_number, UWord* args,
UInt nArgs, SysRes res){

}

static void init(void)
{

VG_(details_name) ("Taminoo");
VG_(details_version) (NULL);
VG_(details_description) ("Taint analysis poc");
[...]
VG_(basic_tool_funcs) (init, instrument, fini);
[...]
VG_(needs_syscall_wrapper) (pre_syscall, post_syscall);

}

VG_DETERMINE_INTERFACE_VERSION(init)
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Spread the taints

To propagate correctly the taints, we instrument each instruction of the binary.
If it is a GET, LOAD, PUT or STORE instruction we spread the taints.
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Spread the taints

The variable a is tainted. When b = a and c = b, b and c will also be tainted
because they can be controlled via a.

uint32_t a, b, c;

a = atoi(user_input);
b = a; /* b is tainted */
c = b; /* c is tainted */
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Spread the taints - in Valgrind

switch (st->tag) {

case Ist_Store:

INSERT_DIRTY(helper_store,

/* dst_addr */ st->Ist.Store.addr,

/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Store.data),

/* size */ INSERT_EXPR_SIZE(st->Ist.Store.data));

break;

case Ist_Put:

INSERT_DIRTY(helper_put,

/* dst_reg */ mkIRExpr_HWord(st->Ist.Put.offset),

/* src_tmp */ INSERT_TMP_NUMBER(st->Ist.Put.data),

/* size */ INSERT_EXPR_SIZE(st->Ist.Put.data));

break;

case Iex_Get:

INSERT_DIRTY(helper_get,

/* dst_tmp */ mkIRExpr_HWord(dst),

/* src_reg */ mkIRExpr_HWord(data->Iex.Get.offset),

/* size */ mkIRExpr_HWord(sizeofIRType(data->Iex.Get.ty)));

break;

case Iex_Load:

INSERT_DIRTY(helper_load,

/* dst_tmp */ mkIRExpr_HWord(st->Ist.WrTmp.tmp),

/* src_addr */ st->Ist.WrTmp.data->Iex.Load.addr,

/* size */ INSERT_TYPE_SIZE(data->Iex.Load.ty));

break;

[...]

}
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Constraints - Output

==14567==

#1:8 = Read(4,0)

#2:8 = Read(4,1)

#3:8 = Read(4,2)

#4:8 = Read(4,3)

#5:32 = 8Uto32(#1:8)

#6:32 = Xor32(#5:32,0x55)

#7:8 = 32to8_0(#6:32)

#8:8 = 32to8_1(#6:32)

#9:8 = 32to8_2(#6:32)

#10:8 = 32to8_3(#6:32)

#11:32 = 8Uto32(#7:8)

#12:8 = 32to8(#11:32)

#13:1 = CmpEQ8(#12:8,0x30) = False

#14:32 = 1Uto32(#13:1)

#15:1 = 32to1(#14:32)

Jump(#15:1) = False

#6 freed

#5 freed

#14 freed

#13 freed

#12 freed

#15 freed

#11 freed

#7 freed

==14567==
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Constraints - List

Every constraint depends of the previous constraint.
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Solve constraints with Z3

All the constraints are converted using the Z3 syntax
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Solve constraints with Z3 - Original constraint

The first constraint is : CmpEQ8(Xor32(Read(4,0),0x55),0x30)
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Solve constraints with Z3 - Z3 pattern

# First constraint in Z3 pattern

x = BitVec(’x’, 32)

s = Solver()

s.add((x ^ 0x55) == 0x30)
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Solve constraints with Z3 - Concolic execution
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Solve constraints with Z3 - All constraints solved

C1 = CmpEQ8(Xor32(Read(4,0),0x55),0x30) = ’e’

C2 = CmpEQ8(Xor32(Read(4,1),0x55),0x39) = ’l’

C3 = CmpEQ8(Xor32(Read(4,2),0x55),0x3c) = ’i’

C4 = CmpEQ8(Xor32(Read(4,3),0x55),0x21) = ’t’

C5 = CmpEQ8(Xor32(Read(4,4),0x55),0x30) = ’e’
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Extra

Blog post : http://shell-storm.org/blog/Concolic-execution-taint-analysis-
with-valgrind-and-constraints-path-solver-with-z3/

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Extra
Questions ?
Thanks !

Questions ?

Questions ?

Jonathan Salwan Software testing and concolic execution



About me
Software testing

Bugs hunting
Concolic execution

IR and constraints solver
Proof of concept

End

Extra
Questions ?
Thanks !

Thanks !

http://sbxc.org

http://twitter.com/JonathanSalwan
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