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● I am a junior security researcher at Quarkslab 
working on tools development for programs analysis 

● I have a strong interest in all low level computing

● I like to play with weird things even though it 
sometimes seems useless

Who Am I?
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● Few words about the goal of this stuff

● Short review of the Security Day Lille's talk

– Really short introduction
– Covering a function using DSE approach
– Some words about vulnerabilities hunting

● Objectives of this talk

– Build specific analysis to find specific bugs
● Analysis for use-after-free detection
● Analysis for heap overflow detection
● Analysis for stack overflow detection
● Analysis for format string detection
● Analysis for {wrtite, read}-what-where detection

– Few words about generic analysis
– Few words about the Triton project !!

● Conclusion

● Q&A

Roadmap Of This Talk
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●First Of All – The Goal Of This Stuff
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● Main goal:

– I want to analyze a binary dynamically

– I want to find unexpected behaviors in its execution to find potential 
vulnerabilities

● Even if these bugs do not crash the program

●First Of All – The Goal Of This Stuff
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●Short Review Of The 
Security Day Lille's Talk
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● In the last talk [0], we saw how it was possible to 
cover a function in memory using a dynamic 
symbolic execution approach

– We generate and inject concrete values in 
memory in order to go through all paths

●Short Review Of The 
Security Day Lille's Talk

[0] http://shell-storm.org/talks/SecurityDay2015_dynamic_symbolic_execution_Jonathan_Salwan.pdf
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● Basically, we:

– Target a function

– Take a context snapshot at the first instruction

– Switch to a dynamic symbolic execution in order to build 
the path constraint (PC)

– Restore the snapshot and generate another concrete 
value to go through another path

– Repeat this operation until all paths are taken

●Short Review Of The 
Security Day Lille's Talk
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● In a nutshell, we got something like this:

●Short Review Of The 
Security Day Lille's Talk

Restore context

Snapshot
Restore

SnapshotTarget
function / basic block

Dynamic Symbolic Execution Possible paths in the target 
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

Control flow graph

ρin

ρ1 ρ2

ρout

ρ3

π1

π2
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iterationTake a snapshot
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin}

¬π1
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

Restore the snapshot

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}

Add to scope

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 : {ρin}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

π1
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 : {ρin, ρ2}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

¬π2
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Restore the snapshot
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope

3th iteration

PC = T : {ρin}
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 : {ρin}

π1
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 : {ρin, ρ2}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1  π∧ 2 : {ρin, ρ2}

π2
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1  π∧ 2 : {ρin, ρ2, ρ3}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1  π∧ 2 : {ρin, ρ2, ρ3, ρout}

Add to scope
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●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1  ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1  π∧ 2 : {ρin, ρ2, ρ3, ρout}

There is no more branches,
so the restore process is over

PC1 = T : {ρin}
PC2 = ¬π1 : {ρin, ρ1, ρout}
PC3 = π1  ¬π∧ 2: {ρin, ρ2, ρout}
PC4 = π1  π∧ 2 : {ρin, ρ2, ρ3, ρout}
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●Symbolic Execution Guided By The 
Taint Analysis
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●Symbolic Execution Guided By The 
Taint Analysis

● Taint analysis provides information about which registers and memory 
addresses are controllable by the user at each program point:

– Assists the symbolic engine to setup the symbolic variables (a 
symbolic variable is a memory area that the user can control)

– May assist the symbolic engine to perform some symbolic 
optimizations

– At each branch instruction, we directly know if the user can go through 
both branches (this is mainly used for code coverage)
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●Symbolic Execution Guided By The 
Taint Analysis

What user can control ?

Can I take both branches ?



33

●Symbolic Execution Guided By The 
Taint Analysis

ZF is controllable, so I can choose the branch 

Tainted memory area

Spread the taint
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●Few Words About Fuzzing
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●Few Words About Fuzzing

● Generally, the main objective is to cover a maximum of code by injecting 
different input samples and wait for a side effect like a segmentation fault

– When a segmentation fault occurs, it means that we probably found a 
bug

– The main issue is that some bugs do not make the program crash

Never triggered

Never triggered
Side effect → Segfault

Side effect → SegfaultNo side effect, no crash
How can I find it?

Program

Iteration 2 Iteration 1

bug

Program

Coverage

Entry point
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●Is Covering All The Paths Enough To 
Find Vulnerabilities?
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Ignored values

Ignored values

●Is Covering All The Paths Enough To 
Find Vulnerabilities?

Values set

Execution (time)

Set of values ignored in the path

Set of possible values used in the path

State of variables during the execution

Values that trigger a vulnerability

● No! Code coverage != State coverage. A variable can hold several values during the execution and some of 
these may not trigger any bug.

● We must generate all concrete values that a path can hold to cover all the possible states.

– Imply a lot of overload in the worst case

● Below, a Cousot style graph which represents some possible states of a variable during the execution in a 
path. 
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Ignored values

Ignored values

●A Bug May Not Make The 
Program Crash

Values set

Execution (time)

Set of values ignored in the path

Set of possible values used in the path

State of the variable during the execution

Values that trigger a vulnerability

● Another important point is that a bug may not make the program crash

● Lots of fuzzers are based on the fact that a bug may have side effect like a SIGSEGV

– That's why we must implement some behavior analysis to find bugs which does not 
make the program crash

May not cause a crash
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●OK, now that the introduction is over,
let's start the talk!
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● Covering a function is not enough to find vulnerabilities

– We must apply some “behavior analysis” at runtime using binary 
instrumentation

● Really hard to build a generic analysis which find all kind of bugs
● So, we must build specific analysis to find specific bugs
● What kind of bugs we want to find? In this talk we will see how to 

find these kind of bugs:

– Use-after-free
– Overflow on heap / stack
– Format string
– {write, read}-what-where

Objective Of This Talk
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●Use-After-Free Analysis
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● An use-after-free mainly occurs when there is a LOAD/STORE on an already freed area

● First, we maintain an allocation map (TA) and a free map (TF) of <Δ,S> items where Δ is the base address 
of the allocation and S its size. <Δ,S> represents an area

– Monitor the malloc (*alloc) function(s)

● Δ is provided by the EAX register at the malloc return
● S is provided by the argument of the malloc call
● We add a new <Δ,S> in TA and delete the <Δ,S> in TF if it exist.

– If Δnew  TF  ∈ ∧ Snew ≠ Sold → <Δold,Sold>TF is divided in two items where the first item will be in TA 
and the second item will still be in TF

– When a free occurs we move the <Δ,S> from TA to TF

– When a  LOAD/STORE occurs, we check if there is a Δ in TA or TF and applies these following rules: 

● If Δ   TA ∈ → valid memory access

● If Δ   TA  Δ  TF ∉ ∧ ∉ → invalid memory access

● If Δ   TA  Δ  TF ∉ ∧ ∈ → use-after-free

Use-After-Free Analysis

Allocate Used Freed Used

Execution



43

●Heap Overflow Analysis
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● Maintain an allocation map (TA) of <Δ,S> where Δ is 
the base address of the allocation and S its size 
(<Δ,S> represents an area)

● Monitor all STORE / LOAD and checkup if Δ  TA∈

● We denote β  ∈ ℕ0 the iteration number and <Δβ,Sβ> 
the area description over each loop iteration

● When a loop applies a linear STORE, we apply 
these rules:

– If β  *  Δ∈ ℕ ∧ β = Δβ-1  β < S → OK∧

– If β  *  Δ∈ ℕ ∧ β ≠ Δβ-1  β >= S → Heap overflow∧

Heap Overflow Analysis

Execution

Nb

Instruction

STORE instruction

1

5
6

Loop

Compare and 
Branch instruction

Memory

<Δ, S>

STORE outside an 
allocated area
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●Stack Overflow Analysis
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● Two possible analysis:
– Overflow outside the stack frame

– Overflow between two variables of a same stack frame
● We will focus on this analysis

Stack Overflow Analysis

  int a, b, i;

  a = 0x90909090;
  b = 0x91919191;

  for (i = 0; i <= sizeof(b); i++) /* off-by-one */
    *(((unsigned char *)(&b))+i) = 'E';

Same stack frame

One byte wrote outside the b area

How can I detect this off-by-one?
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● We must:
– Isolate all stack frames

● Routine may be given by Pin or monitor all call/ret
● Then, the area is given by the prologue 

– Find how many variables are in the stack frame
● We use the A-Locs (Abstract Locations) methods from the Value-Set-Analysis 

paper  [0] 

– Assign an area <ID,Δ,S> for each variable where ID ∈  is the unique stack ℕ
frame id, Δ the base address of the variable and S the size of the variable

● Like heap overflow analysis, check if there is a change of area <ID,Δ,S> during a 
linear STORE

Stack Overflow Analysis

[0] Analyzing Memory Accesses in x86 Executables by Gogul Balakrishnan and Thomas Reps
     http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1920&rep=rep1&type=pdf  

Each stack frame must 
have a unique ID
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Stack Overflow Analysis

01. 4006d4: mov qword ptr [rbp-0x10], 0x0       (dest: 7fffdae70d10) (stack frame ID: 3)
02. 4006dc: mov qword ptr [rbp-0x18], 0x0       (dest: 7fffdae70d08) (stack frame ID: 3)
03. 4006e4: mov dword ptr [rbp-0x4], 0x0        (dest: 7fffdae70d1c) (stack frame ID: 3)
04. 40071f: mov dword ptr [rbp-0x4], 0x0        (dest: 7fffdae70d1c) (stack frame ID: 5)
05. 400742: mov dword ptr [rbp-0x4], 0x0        (dest: 7fffdae70d1c) (stack frame ID: 5)
06. 400640: mov dword ptr [rbp-0x4], 0x0        (dest: 7fffdae70cdc) (stack frame ID: 9)
07. 400669: mov dword ptr [rbp-0x8], 0x90909090 (dest: 7fffdae70cd8) (stack frame ID: 10)
08. 400670: mov dword ptr [rbp-0xc], 0x91919191 (dest: 7fffdae70cd4) (stack frame ID: 10)
09. 400677: mov dword ptr [rbp-0x4], 0x0        (dest: 7fffdae70cdc) (stack frame ID: 10)
10.
11. id stack frame: 3    Num var: 3
12. id stack frame: 5    Num var: 1
13. id stack frame: 9    Num var: 1
14. id stack frame: 10   Num var: 3

1 var

● If there is two assignments on a same <ID,Δ>  → Interpret this as one variable area 
(take a look at line .04 and .05)

● However, if there is two assignments on <ID,Δ> and <ID,Δ+n> → Interpret this as two 
variables areas and we must refine the first area
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Stack Overflow Analysis

● As the heap overflow analysis, we must monitor each 
loop which applies a linear STORE and check if there 
is a change of area

● We denote β  ∈ ℕ0 the iteration number and 
<IDβ,Δβ,Sβ> the area description over each loop 
iteration

● If β  *  X∈ ℕ ∧ β = Xβ-1 ∧ Δβ = Δβ-1 → OK
● If β  *  X∈ ℕ ∧ β ≠ Xβ-1 → Overflow outside the stack 

frame
● If β  *  Δ∈ ℕ ∧ β ≠ Δβ-1 → Overflow between two variables

0x400517

0x7fffffffdc12 0x7fffffffdc13 0x7fffffffdc140x7fffffffdc110x7fffffffdc10

<3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc14, 4>

Execution

Nb

Instruction

STORE instruction

1

5
6

Loop

Compare and 
Branch instruction

Stack

<x,Δ1,S> <x,Δ2,S>
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Stack Overflow Analysis

● The main weakness of this approach is the false positives in a specific case
● Lots of developers use the memset function to fill structures 
● Let assume A,B  S such that A→<1,Δ,4>, B→<1,Δ+4,4>  and S→<1,Δ,8>∈
● When the memset function is applied, the analysis will detect a stack 

overflow from the area A to B 

f(){
  struct s_foo S;

  memset(&S, 0, sizeof(struct s_foo));
  …
}
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●Format String Analysis
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● This analysis mainly relies on the Taint Engine
● We monitor all functions susceptible to use string formats

– Based on the calling convention, when a CALL occurs we get 
the function's arguments

– If the first argument points on a tainted area, it means that the 
user can control the format string

● Implies a format string bug

Format String Analysis

RDI: string

CALL

RDI: string

RSI: va_arg1

CALL

RDI: string

RSI: va_arg1

RDX: va_arg2

CALL
printf(ptr)

printf(ptr, arg1)

printf(ptr, arg1, arg2)

RDI is an address. Does this address contains tainted bytes?



53

●{Write, Read}-What-Where Analysis
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● This analysis mainly relies on the Taint Engine

● We must monitor all STORE/LOAD instruction and check if the destination/source is tainted

● LOAD:

– If reg is tainted → read-where bug

● STORE:

– If reg is tainted → write-where bug

– If both operands are tainted (reg, reg) → write-what-where bug

{Write, Read}-What-Where Analysis

Memory

LOAD STORE

mov r, [   ] Mov [   ], r/imm

Tainted?

regreg

Unsafe

Safe

Yes

No
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●Conclusion
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● Covering a function or its state is not enough
● We must apply some behavior analysis during the execution 

to find bugs which do not make the program to crash
● Building a generic algorithm to find all kind of bugs is hard

– We must build specific analysis to find specific bugs

● Lots of developments must be done before starting to work 
on the analysis part
– Some analysis may reposes on the result of engines like the 

write-what-where or format string bugs which are based on the 
Taint Engine

Conclusion
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●The Triton project !The Triton Project
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●The Triton project !The Triton Project

● Triton provides some engines to improve analysis given by the Pin framework

● Developed in close collaboration with Florent Saudel 

● Basically the Triton's engines are:

– A Taint engine

● Mainly used to know what variables and part of memory are controllable by the user at each program point 

– A Symbolic state engine

● Mainly used to build symbolic expression for each register/memory at each program point

– A Snapshot engine

● Mainly used to replay traces directly in memory without running again the program 

– It also provides an Intermediate Representation in SMT2-LIB

● Mainly used to solve equations with a theorem prover

– It provides an interface with Z3 to solve symbolic expression like the paths condition

– Then, it also applies all analysis described in this talk

 

● The Triton project will be detailed and released at SSTIC 2015
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●Final Words
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● Recap:

– It possible to cover a function in memory using snapshot and dynamic 
symbolic execution

– It possible to find bugs without side effect (like SIGSEGV)

● Some bugs do not crash the program

– Really hard to make generic algorithms to find all kind of bugs

● We must build specific analysis for each bugs category

– Use symbolic execution for code coverage and dynamic behavior 
analysis to find vulnerabilities in paths

● Increase your chance to find bugs 

– Triton project announcement

Final Words
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● Contact

– Mail: jsalwan@quarkslab.com

– Twitter: @JonathanSalwan

● Thanks

– I would like to thank the st'hack's staff and especially Florian Gaultier for the invitation 
and his hard work. Thanks also to Jean-Christophe Delaunay, Serge Guelton and 
Eloi Vanderbeken for the proofreading

Thanks For Your Attention
Question(s)?

mailto:jsalwan@quarkslab.com
https://twitter.com/JonathanSalwan
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● How did you detect the loops?

● The main problem was for the stack and the heap overflow analysis

● Detect loops at runtime is a kind of challenge

– Lots of papers apply a first pass of static analysis to build CFG and 
locates the loops

● Actually, what we did is a kind of “hack” and we did not found the 
good way yet...

● At runtime, we maintains a map of <Δ:n> where Δ is the address of 
the current instruction and n  *∈ ℕ  the number of hits

● Generally a loop ends by a branch instruction and contains more 
than 1 hits (n)

● We apply some heuristics based on these “tricks”

● One of the problem with this, is that we can't detect a loop of 1 
iteration. However, should we consider this as a loop?

● Even if we don't apply runtime analysis, all results of the trace can 
be stored in a database and further processed

Q&A - Problems Encountered

Addr    Nb  Inst
4004e4  1   push rbp
4004e5  1   mov rbp, rsp
4004e8  1   mov dword ptr [rbp-0x14], edi
4004eb  1   mov qword ptr [rbp-0x20], rsi
4004ef  1   mov dword ptr [rbp-0x10], 0x11111111
4004f6  1   mov dword ptr [rbp-0x8], 0x22222222
4004fd  1   mov dword ptr [rbp-0xc], 0x33333333
400504  1   mov dword ptr [rbp-0x4], 0x0
40050b  1   jmp 0x40051e
40050d  5   mov eax, dword ptr [rbp-0x4]
400510  5   lea rdx, ptr [rbp-0x10]
400514  5   add rax, rdx
400517  5   mov byte ptr [rax], 0x2e
40051a  5   add dword ptr [rbp-0x4], 0x1
40051e  6   cmp dword ptr [rbp-0x4], 0x4
400522  6   jbe 0x40050d
400524  1   mov eax, 0x0
400529  1   pop rbp
40052a  1   ret

Probably a loop
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● Does your analysis imply overheads?

● Yes, of course as a lots of tools

● By default DBI increases the time of the execution. Add others 
analysis and you got an overhead of 500% to 1000%

● For example, Triton processes 5,120,000 of expressions (with 
dataflow, SMT translation, symbolic state,...) around 140 seconds 
with 12Go of consumed RAM 

– Tested on a Lenovo x230 -  i7-3520M CPU @ 2.90GHz

● Still unworkable on a whole binary as Firefox, chromium, etc...

– That is why we target specific functions

Q&A - Benchmarks
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● Do you have some future ideas?

● Yes:

– First of all: still working on the Triton design

– Optimize the symbolic execution processing using a semantics' dictionary 
(poke Florent)

– Optimize the memory usage caused by the execution using a custom remote 
allocation implemented as a kernel module

– Use abstract interpretation in specific cases (poke Eloi)

– Build a real runtime models checking 

– Search how can we parallelize the execution (fork at each branch?)

– Manage the memory snapshotting using memory versioning

– IDA plugin

– And still lots of secret ideas :)

Q&A – Future Work?
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