
Dynamic Behavior Analysis Using
Binary Instrumentation

Jonathan Salwan
jsalwan@quarkslab.com

St'Hack
Bordeaux – France

March 27 2015

Keywords: program analysis, DBI, DBA, Pin, concrete execution,
symbolic execution, DSE, taint analysis, context snapshot,
Z3 theorem prover and behavior analysis.

mailto:jsalwan@quarkslab.com

2

● I am a junior security researcher at Quarkslab
working on tools development for programs analysis

● I have a strong interest in all low level computing

● I like to play with weird things even though it
sometimes seems useless

Who Am I?

3

● Few words about the goal of this stuff

● Short review of the Security Day Lille's talk

– Really short introduction
– Covering a function using DSE approach
– Some words about vulnerabilities hunting

● Objectives of this talk

– Build specific analysis to find specific bugs
● Analysis for use-after-free detection
● Analysis for heap overflow detection
● Analysis for stack overflow detection
● Analysis for format string detection
● Analysis for {wrtite, read}-what-where detection

– Few words about generic analysis
– Few words about the Triton project !!

● Conclusion

● Q&A

Roadmap Of This Talk

4

●First Of All – The Goal Of This Stuff

5

● Main goal:

– I want to analyze a binary dynamically

– I want to find unexpected behaviors in its execution to find potential
vulnerabilities

● Even if these bugs do not crash the program

●First Of All – The Goal Of This Stuff

ba 05 00 00 00 be
00 58 40 00 31 ff
89 4c 24 10 e8 1c
fb ff ff 31 f6 48
89 c2 bf 01 00 00
00 31 c0 e8 3b fd
ff ff 8b 05 35 67
20 00 8b 4c 24 10
Be 30 58 40 00 31

ba 05 00 00 00 be
00 58 40 00 31 ff
89 4c 24 10 e8 1c
fb ff ff 31 f6 48
89 c2 bf 01 00 00
00 31 c0 e8 3b fd
ff ff 8b 05 35 67
20 00 8b 4c 24 10
Be 30 58 40 00 31

Execution

Behavior
Analysis

binary

Analysis 1 Analysis 2

6

●Short Review Of The
Security Day Lille's Talk

7

● In the last talk [0], we saw how it was possible to
cover a function in memory using a dynamic
symbolic execution approach

– We generate and inject concrete values in
memory in order to go through all paths

●Short Review Of The
Security Day Lille's Talk

[0] http://shell-storm.org/talks/SecurityDay2015_dynamic_symbolic_execution_Jonathan_Salwan.pdf

8

● Basically, we:

– Target a function

– Take a context snapshot at the first instruction

– Switch to a dynamic symbolic execution in order to build
the path constraint (PC)

– Restore the snapshot and generate another concrete
value to go through another path

– Repeat this operation until all paths are taken

●Short Review Of The
Security Day Lille's Talk

9

● In a nutshell, we got something like this:

●Short Review Of The
Security Day Lille's Talk

Restore context

Snapshot
Restore

SnapshotTarget
function / basic block

Dynamic Symbolic Execution Possible paths in the target

10

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

Control flow graph

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

11

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iterationTake a snapshot

12

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}Add to scope

13

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin}

¬π1

14

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1}

Add to scope

15

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope

16

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

1st iteration

Restore the snapshot

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

17

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}

Add to scope

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

18

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 : {ρin}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

π1

19

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 : {ρin, ρ2}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope

20

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

¬π2

21

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope

22

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Restore the snapshot

23

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

Add to scope

3th iteration

PC = T : {ρin}

24

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 : {ρin}

π1

25

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 : {ρin, ρ2}

Add to scope

26

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 π∧ 2 : {ρin, ρ2}

π2

27

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 π∧ 2 : {ρin, ρ2, ρ3}

Add to scope

28

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 π∧ 2 : {ρin, ρ2, ρ3, ρout}

Add to scope

29

●Dynamic Symbolic Execution

● The Dynamic Symbolic Execution process looks like this:

ρin

ρ1 ρ2

ρout

ρ3

π1

π2

2nd iteration

PC = T : {ρin}
PC = π1 ¬π∧ 2: {ρin, ρ2, ρout}

1st iteration

PC = T : {ρin}
PC = ¬π1 : {ρin, ρ1, ρout}

3th iteration

PC = T : {ρin}
PC = π1 π∧ 2 : {ρin, ρ2, ρ3, ρout}

There is no more branches,
so the restore process is over

PC1 = T : {ρin}
PC2 = ¬π1 : {ρin, ρ1, ρout}
PC3 = π1 ¬π∧ 2: {ρin, ρ2, ρout}
PC4 = π1 π∧ 2 : {ρin, ρ2, ρ3, ρout}

30

●Symbolic Execution Guided By The
Taint Analysis

31

●Symbolic Execution Guided By The
Taint Analysis

● Taint analysis provides information about which registers and memory
addresses are controllable by the user at each program point:

– Assists the symbolic engine to setup the symbolic variables (a
symbolic variable is a memory area that the user can control)

– May assist the symbolic engine to perform some symbolic
optimizations

– At each branch instruction, we directly know if the user can go through
both branches (this is mainly used for code coverage)

32

●Symbolic Execution Guided By The
Taint Analysis

What user can control ?

Can I take both branches ?

33

●Symbolic Execution Guided By The
Taint Analysis

ZF is controllable, so I can choose the branch

Tainted memory area

Spread the taint

34

●Few Words About Fuzzing

35

●Few Words About Fuzzing

● Generally, the main objective is to cover a maximum of code by injecting
different input samples and wait for a side effect like a segmentation fault

– When a segmentation fault occurs, it means that we probably found a
bug

– The main issue is that some bugs do not make the program crash

Never triggered

Never triggered
Side effect → Segfault

Side effect → SegfaultNo side effect, no crash
How can I find it?

Program

Iteration 2 Iteration 1

bug

Program

Coverage

Entry point

36

●Is Covering All The Paths Enough To
Find Vulnerabilities?

37

Ignored values

Ignored values

●Is Covering All The Paths Enough To
Find Vulnerabilities?

Values set

Execution (time)

Set of values ignored in the path

Set of possible values used in the path

State of variables during the execution

Values that trigger a vulnerability

● No! Code coverage != State coverage. A variable can hold several values during the execution and some of
these may not trigger any bug.

● We must generate all concrete values that a path can hold to cover all the possible states.

– Imply a lot of overload in the worst case

● Below, a Cousot style graph which represents some possible states of a variable during the execution in a
path.

38

Ignored values

Ignored values

●A Bug May Not Make The
Program Crash

Values set

Execution (time)

Set of values ignored in the path

Set of possible values used in the path

State of the variable during the execution

Values that trigger a vulnerability

● Another important point is that a bug may not make the program crash

● Lots of fuzzers are based on the fact that a bug may have side effect like a SIGSEGV

– That's why we must implement some behavior analysis to find bugs which does not
make the program crash

May not cause a crash

39

●OK, now that the introduction is over,
let's start the talk!

40

● Covering a function is not enough to find vulnerabilities

– We must apply some “behavior analysis” at runtime using binary
instrumentation

● Really hard to build a generic analysis which find all kind of bugs
● So, we must build specific analysis to find specific bugs
● What kind of bugs we want to find? In this talk we will see how to

find these kind of bugs:

– Use-after-free
– Overflow on heap / stack
– Format string
– {write, read}-what-where

Objective Of This Talk

41

●Use-After-Free Analysis

42

● An use-after-free mainly occurs when there is a LOAD/STORE on an already freed area

● First, we maintain an allocation map (TA) and a free map (TF) of <Δ,S> items where Δ is the base address
of the allocation and S its size. <Δ,S> represents an area

– Monitor the malloc (*alloc) function(s)

● Δ is provided by the EAX register at the malloc return
● S is provided by the argument of the malloc call
● We add a new <Δ,S> in TA and delete the <Δ,S> in TF if it exist.

– If Δnew TF ∈ ∧ Snew ≠ Sold → <Δold,Sold>TF is divided in two items where the first item will be in TA
and the second item will still be in TF

– When a free occurs we move the <Δ,S> from TA to TF

– When a LOAD/STORE occurs, we check if there is a Δ in TA or TF and applies these following rules:

● If Δ TA ∈ → valid memory access

● If Δ TA Δ TF ∉ ∧ ∉ → invalid memory access

● If Δ TA Δ TF ∉ ∧ ∈ → use-after-free

Use-After-Free Analysis

Allocate Used Freed Used

Execution

43

●Heap Overflow Analysis

44

● Maintain an allocation map (TA) of <Δ,S> where Δ is
the base address of the allocation and S its size
(<Δ,S> represents an area)

● Monitor all STORE / LOAD and checkup if Δ TA∈

● We denote β ∈ ℕ0 the iteration number and <Δβ,Sβ>
the area description over each loop iteration

● When a loop applies a linear STORE, we apply
these rules:

– If β * Δ∈ ℕ ∧ β = Δβ-1 β < S → OK∧

– If β * Δ∈ ℕ ∧ β ≠ Δβ-1 β >= S → Heap overflow∧

Heap Overflow Analysis

Execution

Nb

Instruction

STORE instruction

1

5
6

Loop

Compare and
Branch instruction

Memory

<Δ, S>

STORE outside an
allocated area

45

●Stack Overflow Analysis

46

● Two possible analysis:
– Overflow outside the stack frame

– Overflow between two variables of a same stack frame
● We will focus on this analysis

Stack Overflow Analysis

 int a, b, i;

 a = 0x90909090;
 b = 0x91919191;

 for (i = 0; i <= sizeof(b); i++) /* off-by-one */
 *(((unsigned char *)(&b))+i) = 'E';

Same stack frame

One byte wrote outside the b area

How can I detect this off-by-one?

47

● We must:
– Isolate all stack frames

● Routine may be given by Pin or monitor all call/ret
● Then, the area is given by the prologue

– Find how many variables are in the stack frame
● We use the A-Locs (Abstract Locations) methods from the Value-Set-Analysis

paper [0]

– Assign an area <ID,Δ,S> for each variable where ID ∈ is the unique stack ℕ
frame id, Δ the base address of the variable and S the size of the variable

● Like heap overflow analysis, check if there is a change of area <ID,Δ,S> during a
linear STORE

Stack Overflow Analysis

[0] Analyzing Memory Accesses in x86 Executables by Gogul Balakrishnan and Thomas Reps
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1920&rep=rep1&type=pdf

Each stack frame must
have a unique ID

48

Stack Overflow Analysis

01. 4006d4: mov qword ptr [rbp-0x10], 0x0 (dest: 7fffdae70d10) (stack frame ID: 3)
02. 4006dc: mov qword ptr [rbp-0x18], 0x0 (dest: 7fffdae70d08) (stack frame ID: 3)
03. 4006e4: mov dword ptr [rbp-0x4], 0x0 (dest: 7fffdae70d1c) (stack frame ID: 3)
04. 40071f: mov dword ptr [rbp-0x4], 0x0 (dest: 7fffdae70d1c) (stack frame ID: 5)
05. 400742: mov dword ptr [rbp-0x4], 0x0 (dest: 7fffdae70d1c) (stack frame ID: 5)
06. 400640: mov dword ptr [rbp-0x4], 0x0 (dest: 7fffdae70cdc) (stack frame ID: 9)
07. 400669: mov dword ptr [rbp-0x8], 0x90909090 (dest: 7fffdae70cd8) (stack frame ID: 10)
08. 400670: mov dword ptr [rbp-0xc], 0x91919191 (dest: 7fffdae70cd4) (stack frame ID: 10)
09. 400677: mov dword ptr [rbp-0x4], 0x0 (dest: 7fffdae70cdc) (stack frame ID: 10)
10.
11. id stack frame: 3 Num var: 3
12. id stack frame: 5 Num var: 1
13. id stack frame: 9 Num var: 1
14. id stack frame: 10 Num var: 3

1 var

● If there is two assignments on a same <ID,Δ> → Interpret this as one variable area
(take a look at line .04 and .05)

● However, if there is two assignments on <ID,Δ> and <ID,Δ+n> → Interpret this as two
variables areas and we must refine the first area

49

Stack Overflow Analysis

● As the heap overflow analysis, we must monitor each
loop which applies a linear STORE and check if there
is a change of area

● We denote β ∈ ℕ0 the iteration number and
<IDβ,Δβ,Sβ> the area description over each loop
iteration

● If β * X∈ ℕ ∧ β = Xβ-1 ∧ Δβ = Δβ-1 → OK
● If β * X∈ ℕ ∧ β ≠ Xβ-1 → Overflow outside the stack

frame
● If β * Δ∈ ℕ ∧ β ≠ Δβ-1 → Overflow between two variables

0x400517

0x7fffffffdc12 0x7fffffffdc13 0x7fffffffdc140x7fffffffdc110x7fffffffdc10

<3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc10, 4> <3, 0x7fffffffdc14, 4>

Execution

Nb

Instruction

STORE instruction

1

5
6

Loop

Compare and
Branch instruction

Stack

<x,Δ1,S> <x,Δ2,S>

50

Stack Overflow Analysis

● The main weakness of this approach is the false positives in a specific case
● Lots of developers use the memset function to fill structures
● Let assume A,B S such that A→<1,Δ,4>, B→<1,Δ+4,4> and S→<1,Δ,8>∈
● When the memset function is applied, the analysis will detect a stack

overflow from the area A to B

f(){
 struct s_foo S;

 memset(&S, 0, sizeof(struct s_foo));
 …
}

51

●Format String Analysis

52

● This analysis mainly relies on the Taint Engine
● We monitor all functions susceptible to use string formats

– Based on the calling convention, when a CALL occurs we get
the function's arguments

– If the first argument points on a tainted area, it means that the
user can control the format string

● Implies a format string bug

Format String Analysis

RDI: string

CALL

RDI: string

RSI: va_arg1

CALL

RDI: string

RSI: va_arg1

RDX: va_arg2

CALL
printf(ptr)

printf(ptr, arg1)

printf(ptr, arg1, arg2)

RDI is an address. Does this address contains tainted bytes?

53

●{Write, Read}-What-Where Analysis

54

● This analysis mainly relies on the Taint Engine

● We must monitor all STORE/LOAD instruction and check if the destination/source is tainted

● LOAD:

– If reg is tainted → read-where bug

● STORE:

– If reg is tainted → write-where bug

– If both operands are tainted (reg, reg) → write-what-where bug

{Write, Read}-What-Where Analysis

Memory

LOAD STORE

mov r, [] Mov [], r/imm

Tainted?

regreg

Unsafe

Safe

Yes

No

55

●Conclusion

56

● Covering a function or its state is not enough
● We must apply some behavior analysis during the execution

to find bugs which do not make the program to crash
● Building a generic algorithm to find all kind of bugs is hard

– We must build specific analysis to find specific bugs

● Lots of developments must be done before starting to work
on the analysis part
– Some analysis may reposes on the result of engines like the

write-what-where or format string bugs which are based on the
Taint Engine

Conclusion

57

●The Triton project !The Triton Project

58

●The Triton project !The Triton Project

● Triton provides some engines to improve analysis given by the Pin framework

● Developed in close collaboration with Florent Saudel

● Basically the Triton's engines are:

– A Taint engine

● Mainly used to know what variables and part of memory are controllable by the user at each program point

– A Symbolic state engine

● Mainly used to build symbolic expression for each register/memory at each program point

– A Snapshot engine

● Mainly used to replay traces directly in memory without running again the program

– It also provides an Intermediate Representation in SMT2-LIB

● Mainly used to solve equations with a theorem prover

– It provides an interface with Z3 to solve symbolic expression like the paths condition

– Then, it also applies all analysis described in this talk

● The Triton project will be detailed and released at SSTIC 2015

59

●Final Words

60

● Recap:

– It possible to cover a function in memory using snapshot and dynamic
symbolic execution

– It possible to find bugs without side effect (like SIGSEGV)

● Some bugs do not crash the program

– Really hard to make generic algorithms to find all kind of bugs

● We must build specific analysis for each bugs category

– Use symbolic execution for code coverage and dynamic behavior
analysis to find vulnerabilities in paths

● Increase your chance to find bugs

– Triton project announcement

Final Words

61

● Contact

– Mail: jsalwan@quarkslab.com

– Twitter: @JonathanSalwan

● Thanks

– I would like to thank the st'hack's staff and especially Florian Gaultier for the invitation
and his hard work. Thanks also to Jean-Christophe Delaunay, Serge Guelton and
Eloi Vanderbeken for the proofreading

Thanks For Your Attention
Question(s)?

mailto:jsalwan@quarkslab.com
https://twitter.com/JonathanSalwan

62

● How did you detect the loops?

● The main problem was for the stack and the heap overflow analysis

● Detect loops at runtime is a kind of challenge

– Lots of papers apply a first pass of static analysis to build CFG and
locates the loops

● Actually, what we did is a kind of “hack” and we did not found the
good way yet...

● At runtime, we maintains a map of <Δ:n> where Δ is the address of
the current instruction and n *∈ ℕ the number of hits

● Generally a loop ends by a branch instruction and contains more
than 1 hits (n)

● We apply some heuristics based on these “tricks”

● One of the problem with this, is that we can't detect a loop of 1
iteration. However, should we consider this as a loop?

● Even if we don't apply runtime analysis, all results of the trace can
be stored in a database and further processed

Q&A - Problems Encountered

Addr Nb Inst
4004e4 1 push rbp
4004e5 1 mov rbp, rsp
4004e8 1 mov dword ptr [rbp-0x14], edi
4004eb 1 mov qword ptr [rbp-0x20], rsi
4004ef 1 mov dword ptr [rbp-0x10], 0x11111111
4004f6 1 mov dword ptr [rbp-0x8], 0x22222222
4004fd 1 mov dword ptr [rbp-0xc], 0x33333333
400504 1 mov dword ptr [rbp-0x4], 0x0
40050b 1 jmp 0x40051e
40050d 5 mov eax, dword ptr [rbp-0x4]
400510 5 lea rdx, ptr [rbp-0x10]
400514 5 add rax, rdx
400517 5 mov byte ptr [rax], 0x2e
40051a 5 add dword ptr [rbp-0x4], 0x1
40051e 6 cmp dword ptr [rbp-0x4], 0x4
400522 6 jbe 0x40050d
400524 1 mov eax, 0x0
400529 1 pop rbp
40052a 1 ret

Probably a loop

63

● Does your analysis imply overheads?

● Yes, of course as a lots of tools

● By default DBI increases the time of the execution. Add others
analysis and you got an overhead of 500% to 1000%

● For example, Triton processes 5,120,000 of expressions (with
dataflow, SMT translation, symbolic state,...) around 140 seconds
with 12Go of consumed RAM

– Tested on a Lenovo x230 - i7-3520M CPU @ 2.90GHz

● Still unworkable on a whole binary as Firefox, chromium, etc...

– That is why we target specific functions

Q&A - Benchmarks

64

● Do you have some future ideas?

● Yes:

– First of all: still working on the Triton design

– Optimize the symbolic execution processing using a semantics' dictionary
(poke Florent)

– Optimize the memory usage caused by the execution using a custom remote
allocation implemented as a kernel module

– Use abstract interpretation in specific cases (poke Eloi)

– Build a real runtime models checking

– Search how can we parallelize the execution (fork at each branch?)

– Manage the memory snapshotting using memory versioning

– IDA plugin

– And still lots of secret ideas :)

Q&A – Future Work?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

