Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
0F 28 /r MOVAPS xmm1, xmm2/m128 | RM | V/V | SSE | Move aligned packed single-precision floating-point values from xmm2/mem to xmm1. |
0F 29 /r MOVAPS xmm2/m128, xmm1 | MR | V/V | SSE | Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem. |
VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128 | RM | V/V | AVX | Move aligned packed single-precision floating-point values from xmm2/mem to xmm1. |
VEX.128.0F.WIG 29 /r VMOVAPS xmm2/m128, xmm1 | MR | V/V | AVX | Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem. |
VEX.256.0F.WIG 28 /r VMOVAPS ymm1, ymm2/m256 | RM | V/V | AVX | Move aligned packed single-precision floating-point values from ymm2/mem to ymm1. |
VEX.256.0F.WIG 29 /r VMOVAPS ymm2/m256, ymm1 | MR | V/V | AVX | Move aligned packed single-precision floating-point values from ymm1 to ymm2/mem. |
EVEX.128.0F.W0 28 /r VMOVAPS xmm1 {k1}{z}, xmm2/m128 | FVM-RM | V/V | AVX512VL AVX512F | Move aligned packed single-precision floating-point values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.0F.W0 28 /r VMOVAPS ymm1 {k1}{z}, ymm2/m256 | FVM-RM | V/V | AVX512VL AVX512F | Move aligned packed single-precision floating-point values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.0F.W0 28 /r VMOVAPS zmm1 {k1}{z}, zmm2/m512 | FVM-RM | V/V | AVX512F | Move aligned packed single-precision floating-point values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.0F.W0 29 /r VMOVAPS xmm2/m128 {k1}{z}, xmm1 | FVM-MR | V/V | AVX512VL AVX512F | Move aligned packed single-precision floating-point values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.0F.W0 29 /r VMOVAPS ymm2/m256 {k1}{z}, ymm1 | FVM-MR | V/V | AVX512VL AVX512F | Move aligned packed single-precision floating-point values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.0F.W0 29 /r VMOVAPS zmm2/m512 {k1}{z}, zmm1 | FVM-MR | V/V | AVX512F | Move aligned packed single-precision floating-point values from zmm1 to zmm2/m512 using writemask k1. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
MR | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
FVM-RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FVM-MR | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Moves 4, 8 or 16 single-precision floating-point values from the source operand (second operand) to the destina-tion operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary or a general-protection exception (#GP) will be generated. For EVEX.512 encoded versions, the operand must be aligned to the size of the memory operand. To move single-precision floating-point values to and from unaligned memory loca-tions, use the VMOVUPS instruction.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 memory location, to store the contents of a ZMM register into a float32 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPS instruction.
VEX.256 and EVEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain unchanged.
(E)VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination ZMM register are zeroed.
VMOVAPS (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SRC[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i] (cid:197) 0 ; zeroing-masking FI FI; ENDFOR DEST[MAX_VL-1:VL] (cid:197) 0VMOVAPS (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i](cid:197) SRC[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR;VMOVAPS (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SRC[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i] (cid:197) 0 ; zeroing-masking FI FI; ENDFOR DEST[MAX_VL-1:VL] (cid:197) 0VMOVAPS (VEX.256 encoded version, load - and register copy)
DEST[255:0] (cid:197) SRC[255:0] DEST[MAX_VL-1:256] (cid:197) 0VMOVAPS (VEX.256 encoded version, store-form)
DEST[255:0] (cid:197) SRC[255:0]VMOVAPS (VEX.128 encoded version, load - and register copy)
DEST[127:0] (cid:197) SRC[127:0] DEST[MAX_VL-1:128] (cid:197) 0MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] (cid:197) SRC[127:0] DEST[MAX_VL-1:128] (Unmodified)(V)MOVAPS (128-bit store-form version)
DEST[127:0] (cid:197) SRC[127:0]
VMOVAPS __m512 _mm512_load_ps( void * m); VMOVAPS __m512 _mm512_mask_load_ps(__m512 s, __mmask16 k, void * m); VMOVAPS __m512 _mm512_maskz_load_ps( __mmask16 k, void * m); VMOVAPS void _mm512_store_ps( void * d, __m512 a); VMOVAPS void _mm512_mask_store_ps( void * d, __mmask16 k, __m512 a); VMOVAPS __m256 _mm256_mask_load_ps(__m256 a, __mmask8 k, void * s); VMOVAPS __m256 _mm256_maskz_load_ps( __mmask8 k, void * s); VMOVAPS void _mm256_mask_store_ps( void * d, __mmask8 k, __m256 a); VMOVAPS __m128 _mm_mask_load_ps(__m128 a, __mmask8 k, void * s); VMOVAPS __m128 _mm_maskz_load_ps( __mmask8 k, void * s); VMOVAPS void _mm_mask_store_ps( void * d, __mmask8 k, __m128 a); MOVAPS __m256 _mm256_load_ps (float * p); MOVAPS void _mm256_store_ps(float * p, __m256 a); MOVAPS __m128 _mm_load_ps (float * p); MOVAPS void _mm_store_ps(float * p, __m128 a);
None
Non-EVEX-encoded instruction, see Exceptions Type1.SSE; additionally
#UD |
If VEX.vvvv != 1111B. EVEX-encoded instruction, see Exceptions Type E1. |