Back to opcode table

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

Opcode/Instruction Op /En 64/32 bit Mode Support CPUID Feature Flag Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers from mm/m64 and mm.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers from mm/m64 and mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers from xmm2/m128 and xmm1.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers from xmm2/m128 and xmm1.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword integers from xmm2/m128 and xmm1.

66 0F D4 /r

PADDQ xmm1, xmm2/m128

RM V/V SSE2 Add packed quadword integers from xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed byte integers from xmm2, and xmm3/m128 and store in xmm1.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed word integers from xmm2, xmm3/m128 and store in xmm1.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed doubleword integers from xmm2, xmm3/m128 and store in xmm1.

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed quadword integers from xmm2, xmm3/m128 and store in xmm1.

VEX.NDS.256.66.0F.WIG FC /r

VPADDB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed byte integers from ymm2, and ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FD /r

VPADDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed word integers from ymm2, ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FE /r

VPADDD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed doubleword integers from ymm2, ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG D4 /r

VPADDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed quadword integers from ymm2, ymm3/m256 and store in ymm1.

EVEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1 {k1}{z}, xmm2, xmm3/m128

FVM V/V AVX512VL AVX512BW Add packed byte integers from xmm2, and xmm3/m128 and store in xmm1 using writemask k1.

EVEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1 {k1}{z}, xmm2, xmm3/m128

FVM V/V AVX512VL AVX512BW Add packed word integers from xmm2, and xmm3/m128 and store in xmm1 using writemask k1.

EVEX.NDS.128.66.0F.W0 FE /r

VPADDD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst

FV V/V AVX512VL AVX512F Add packed doubleword integers from xmm2, and xmm3/m128/m32bcst and store in xmm1 using writemask k1.

EVEX.NDS.128.66.0F.W1 D4 /r

VPADDQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst

FV V/V AVX512VL AVX512F Add packed quadword integers from xmm2, and xmm3/m128/m64bcst and store in xmm1 using writemask k1.

EVEX.NDS.256.66.0F.WIG FC /r

VPADDB ymm1 {k1}{z}, ymm2, ymm3/m256

FVM V/V AVX512VL AVX512BW Add packed byte integers from ymm2, and ymm3/m256 and store in ymm1 using writemask k1.

EVEX.NDS.256.66.0F.WIG FD /r

VPADDW ymm1 {k1}{z}, ymm2, ymm3/m256

FVM V/V AVX512VL AVX512BW Add packed word integers from ymm2, and ymm3/m256 and store in ymm1 using writemask k1.

EVEX.NDS.256.66.0F.W0 FE /r

VPADDD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst

FV V/V AVX512VL AVX512F Add packed doubleword integers from ymm2, ymm3/m256/m32bcst and store in ymm1 using writemask k1.

EVEX.NDS.256.66.0F.W1 D4 /r

VPADDQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst

FV V/V AVX512VL AVX512F Add packed quadword integers from ymm2, ymm3/m256/m64bcst and store in ymm1 using writemask k1.

EVEX.NDS.512.66.0F.WIG FC /r

VPADDB zmm1 {k1}{z}, zmm2, zmm3/m512

FVM V/V AVX512BW Add packed byte integers from zmm2, and zmm3/m512 and store in zmm1 using writemask k1.

EVEX.NDS.512.66.0F.WIG FD /r

VPADDW zmm1 {k1}{z}, zmm2, zmm3/m512

FVM V/V AVX512BW Add packed word integers from zmm2, and zmm3/m512 and store in zmm1 using writemask k1.

EVEX.NDS.512.66.0F.W0 FE /r

VPADDD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst

FV V/V AVX512F Add packed doubleword integers from zmm2, zmm3/m512/m32bcst and store in zmm1 using writemask k1.

EVEX.NDS.512.66.0F.W1 D4 /r

VPADDQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst

FV V/V AVX512F Add packed quadword integers from zmm2, zmm3/m512/m64bcst and store in zmm1 using writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with wraparound, as described in the following paragraphs.

The PADDB and VPADDB instructions add packed byte integers from the first source operand and second source operand and store the packed integer results in the destination operand. When an individual result is too large to be represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to the destination operand (that is, the carry is ignored).

The PADDW and VPADDW instructions add packed word integers from the first source operand and second source operand and store the packed integer results in the destination operand. When an individual result is too large to be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written to the destination operand (that is, the carry is ignored).

The PADDD and VPADDD instructions add packed doubleword integers from the first source operand and second source operand and store the packed integer results in the destination operand. When an individual result is too large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are written to the destination operand (that is, the carry is ignored).

The PADDQ and VPADDQ instructions add packed quadword integers from the first source operand and second source operand and store the packed integer results in the destination operand. When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the destination operand (that is, the carry is ignored).

Note that the (V)PADDB, (V)PADDW, (V)PADDD and (V)PADDQ instructions can operate on either unsigned or signed (two's complement notation) packed integers; however, it does not set bits in the EFLAGS register to indi-cate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of values operated on.

EVEX encoded VPADDD/Q: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.

EVEX encoded VPADDB/W: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. the upper bits (MAX_VL-1:256) of the destination are cleared.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.

Operation


PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];
PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];
PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];
PADDQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
PADDB (Legacy SSE instruction)
DEST[7:0]← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120]← DEST[127:120] + SRC[127:120];
DEST[MAX_VL-1:128] (Unmodified)
PADDW (Legacy SSE instruction)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]← DEST[127:112] + SRC[127:112];
DEST[MAX_VL-1:128] (Unmodified)
PADDD (Legacy SSE instruction)
DEST[31:0]← DEST[31:0]  + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96]← DEST[127:96] + SRC[127:96];
DEST[MAX_VL-1:128] (Unmodified)
PADDQ (Legacy SSE instruction)
DEST[63:0]← DEST[63:0]  + SRC[63:0];
DEST[127:64]← DEST[127:64] + SRC[127:64];
DEST[MAX_VL-1:128] (Unmodified)
VPADDB (VEX.128 encoded instruction)
DEST[7:0]← SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120]← SRC1[127:120] + SRC2[127:120];
DEST[MAX_VL-1:128] ← 0;
VPADDW (VEX.128 encoded instruction)
DEST[15:0] ← SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]← SRC1[127:112] + SRC2[127:112];
DEST[MAX_VL-1:128] ← 0;
VPADDD (VEX.128 encoded instruction)
DEST[31:0]← SRC1[31:0]  + SRC2[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← SRC1[127:96] + SRC2[127:96];
DEST[MAX_VL-1:128] ← 0;
VPADDQ (VEX.128 encoded instruction)
DEST[63:0]← SRC1[63:0]  + SRC2[63:0];
DEST[127:64] ← SRC1[127:64] + SRC2[127:64];
DEST[MAX_VL-1:128] ← 0;
VPADDB (VEX.256 encoded instruction)
DEST[7:0]← SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248]← SRC1[255:248] + SRC2[255:248];
VPADDW (VEX.256 encoded instruction)
DEST[15:0] ← SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240]← SRC1[255:240] + SRC2[255:240];
VPADDD (VEX.256 encoded instruction)
DEST[31:0]← SRC1[31:0]  + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] ← SRC1[255:224] + SRC2[255:224];
VPADDQ (VEX.256 encoded instruction)
DEST[63:0]← SRC1[63:0]  + SRC2[63:0];
DEST[127:64] ← SRC1[127:64] + SRC2[127:64];
DEST[191:128]← SRC1[191:128]  + SRC2[191:128];
DEST[255:192] ← SRC1[255:192] + SRC2[255:192];
VPADDB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 8
    IF k1[j] OR *no writemask*
        THEN DEST[i+7:i] (cid:197) SRC1[i+7:i] + SRC2[i+7:i]
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+7:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+7:i] = 0
        FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] (cid:197) 0
VPADDW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) SRC1[i+15:i] + SRC2[i+15:i]
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+15:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+15:i] = 0
        FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] (cid:197) 0
VPADDD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    IF k1[j] OR *no writemask*
        THEN
        IF (EVEX.b = 1) AND (SRC2 *is memory*)
            THEN DEST[i+31:i] (cid:197) SRC1[i+31:i] + SRC2[31:0]
            ELSE DEST[i+31:i] (cid:197) SRC1[i+31:i] + SRC2[i+31:i]
        FI;
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+31:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+31:i] (cid:197) 0
        FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] (cid:197) 0
VPADDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN
        IF (EVEX.b = 1) AND (SRC2 *is memory*)
            THEN DEST[i+63:i] (cid:197) SRC1[i+63:i] + SRC2[63:0]
            ELSE DEST[i+63:i] (cid:197) SRC1[i+63:i] + SRC2[i+63:i]
        FI;
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+63:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+63:i] (cid:197) 0
        FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] (cid:197) 0

Intel C/C++ Compiler Intrinsic Equivalent

VPADDB__m512i _mm512_add_epi8 ( __m512i a, __m512i b)
VPADDW__m512i _mm512_add_epi16 ( __m512i a, __m512i b)
VPADDB__m512i _mm512_mask_add_epi8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_mask_add_epi16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDB__m512i _mm512_maskz_add_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_maskz_add_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDB__m256i _mm256_mask_add_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_mask_add_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDB__m256i _mm256_maskz_add_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_maskz_add_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDB__m128i _mm_mask_add_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_mask_add_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDB__m128i _mm_maskz_add_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_maskz_add_epi16 (__mmask8 m, __m128i a, __m128i b)
VPADDD __m512i _mm512_add_epi32( __m512i a, __m512i b);
VPADDD __m512i _mm512_mask_add_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPADDD __m512i _mm512_maskz_add_epi32( __mmask16 k, __m512i a, __m512i b);
VPADDD __m256i _mm256_mask_add_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDD __m256i _mm256_maskz_add_epi32( __mmask8 k, __m256i a, __m256i b);
VPADDD __m128i _mm_mask_add_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDD __m128i _mm_maskz_add_epi32( __mmask8 k, __m128i a, __m128i b);
VPADDQ __m512i _mm512_add_epi64( __m512i a, __m512i b);
VPADDQ __m512i _mm512_mask_add_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPADDQ __m512i _mm512_maskz_add_epi64( __mmask8 k, __m512i a, __m512i b);
VPADDQ __m256i _mm256_mask_add_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDQ __m256i _mm256_maskz_add_epi64( __mmask8 k, __m256i a, __m256i b);
VPADDQ __m128i _mm_mask_add_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDQ __m128i _mm_maskz_add_epi64( __mmask8 k, __m128i a, __m128i b);
PADDB __m128i _mm_add_epi8 (__m128i a,__m128i b );
PADDW __m128i _mm_add_epi16 ( __m128i a, __m128i b);
PADDD  __m128i _mm_add_epi32 ( __m128i a, __m128i b);
PADDQ __m128i _mm_add_epi64 ( __m128i a, __m128i b);
VPADDB __m256i _mm256_add_epi8 (__m256ia,__m256i b );
VPADDW __m256i _mm256_add_epi16 ( __m256i a, __m256i b);
VPADDD __m256i _mm256_add_epi32 ( __m256i a, __m256i b);
VPADDQ __m256i _mm256_add_epi64 ( __m256i a, __m256i b);
PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)
PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)
PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)
PADDQ __m64 _mm_add_pi64(__m64 m1, __m64 m2)

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded VPADDD/Q, see Exceptions Type E4.
EVEX-encoded VPADDB/W, see Exceptions Type E4.nb.