Back to opcode table

VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to DWord

Opcode/Instruction Op /En 64/32 bit Mode Support CPUID Feature Flag Description

EVEX.128.F3.0F38.W0 35 /r

VPMOVQD xmm1/m128 {k1}{z}, xmm2

A V/V

AVX512VL

AVX512F

Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.

EVEX.128.F3.0F38.W0 25 /r

VPMOVSQD xmm1/m64 {k1}{z}, xmm2

A V/V

AVX512VL

AVX512F

Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1.

EVEX.128.F3.0F38.W0 15 /r

VPMOVUSQD xmm1/m64 {k1}{z}, xmm2

A V/V

AVX512VL

AVX512F

Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1.

EVEX.256.F3.0F38.W0 35 /r

VPMOVQD xmm1/m128 {k1}{z}, ymm2

A V/V

AVX512VL

AVX512F

Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.

EVEX.256.F3.0F38.W0 25 /r

VPMOVSQD xmm1/m128 {k1}{z}, ymm2

A V/V

AVX512VL

AVX512F

Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1.

EVEX.256.F3.0F38.W0 15 /r

VPMOVUSQD xmm1/m128 {k1}{z}, ymm2

A V/V

AVX512VL

AVX512F

Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1.

EVEX.512.F3.0F38.W0 35 /r

VPMOVQD ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1.

EVEX.512.F3.0F38.W0 25 /r

VPMOVSQD ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1.

EVEX.512.F3.0F38.W0 15 /r

VPMOVUSQD ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
HVM ModRM:r/m (w) ModRM:reg (r) NA NA

Description

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.

Down-converted doubleword elements are written to the destination operand (the first operand) from the least-significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation


VPMOVQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) TruncateQuadWordToDWord (SRC[m+63:m])
        ELSE *zeroing-masking*
        ; zeroing-masking
        DEST[i+31:i] (cid:197) 0
    FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] (cid:197) 0;
VPMOVQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) TruncateQuadWordToDWord (SRC[m+63:m])
        ELSE *DEST[i+31:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR
VPMOVSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) SaturateSignedQuadWordToDWord (SRC[m+63:m])
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+31:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+31:i] (cid:197) 0
        FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/2] (cid:197) 0;
VPMOVSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) SaturateSignedQuadWordToDWord (SRC[m+63:m])
        ELSE *DEST[i+31:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR
VPMOVUSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+31:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+31:i] (cid:197) 0
        FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/2] (cid:197) 0;
VPMOVUSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 32
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] (cid:197) SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
        ELSE *DEST[i+31:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.
If EVEX.vvvv != 1111B.